Elevated levels of NEFA caused by negative energy balance in transition cows induce cellular dyshomeostasis. Ubiquitin-like modifier 1 ligating enzyme 1 (UFL1) can maintain cellular homeostasis and act as a critical regulator of stress responses besides functioning in the ubiquitin-like system. The objective of this study was to elucidate the UFL1 working mechanism on promoting cellular adaptations in bovine mammary epithelial cells (BMECs) in response to NEFA challenge, with an emphasis on the ER and mitochondrial function. The results showed that exogenous NEFA and UFL1 depletion resulted in the disorder of ER and mitochondrial homeostasis and the damage of BMEC integrity, overexpression of UFL1 effectively alleviated the NEFA-induced cellular dyshomeostasis. Mechanistically, our study found that UFL1 had a strong interaction with IRE1α and could modulate the IRE1α/XBP1 pathway of unfolded protein response in NEFA-stimulated BMECs, thereby contributing to the modulation of cellular homeostasis. These findings imply that targeting UFL1 may be a therapeutic alternative to relieve NEB-induced metabolic changes in perinatal dairy cows.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2024.05.039 | DOI Listing |
Sci Rep
December 2024
Department of Psychiatry and Behavioral Sciences and Weill Center for Neurosciences, University of California, San Francisco, CA, 94107, USA.
Telomere attrition is a hallmark of biological aging, contributing to cellular replicative senescence. However, few studies have examined the determinants of telomere attrition in vivo in humans. Mitochondrial Health Index (MHI), a composite marker integrating mitochondrial energy-transformation capacity and content, may be one important mediator of telomere attrition, as it could impact telomerase activity, a direct regulator of telomere maintenance.
View Article and Find Full Text PDFNat Commun
December 2024
Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
The autophagy pathway regulates the degradation of misfolded proteins caused by heat stress (HS) in the cytoplasm, thereby maintaining cellular homeostasis. Although previous studies have established that autophagy (ATG) genes are transcriptionally upregulated in response to HS, the precise regulation of ATG proteins at the subcellular level remains poorly understood. In this study, we provide compelling evidence for the translocation of key autophagy components, including the ATG1/ATG13 kinase complex (ATG1a, ATG13a), PI3K complex (ATG6, VPS34), and ATG8-PE system (ATG5), to HS-induced stress granules (SGs) in Arabidopsis thaliana.
View Article and Find Full Text PDFNat Commun
December 2024
Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Scienes, Guangzhou, China.
CD73, an ectoenzyme responsible for adenosine production, is often elevated in immuno-suppressive tumor environments. Inhibition of CD73 activity holds great promise as a therapeutic strategy for CD73-expressing cancers. In this study, we have developed a therapeutic anti-human CD73 antibody cocktail, HB0045.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
Maintenance of protein homeostasis is necessary for cell viability and depends on a complex network of chaperones and co-chaperones, including the heat-shock protein 70 (Hsp70) system. In human mitochondria, mitochondrial Hsp70 (mortalin) and the nucleotide exchange factor (GrpEL1) work synergistically to stabilize proteins, assemble protein complexes, and facilitate protein import. However, our understanding of the molecular mechanisms guiding these processes is hampered by limited structural information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!