A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An inducible genetic tool to track and manipulate specific microglial states reveals their plasticity and roles in remyelination. | LitMetric

An inducible genetic tool to track and manipulate specific microglial states reveals their plasticity and roles in remyelination.

Immunity

Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine in St. Louis, School of Medicine, St. Louis, MO 63110, USA. Electronic address:

Published: June 2024

Recent single-cell RNA sequencing studies have revealed distinct microglial states in development and disease. These include proliferative-region-associated microglia (PAMs) in developing white matter and disease-associated microglia (DAMs) prevalent in various neurodegenerative conditions. PAMs and DAMs share a similar core gene signature. However, the extent of the dynamism and plasticity of these microglial states, as well as their functional significance, remains elusive, partly due to the lack of specific tools. Here, we generated an inducible Cre driver line, Clec7a-CreER, that targets PAMs and DAMs in the brain parenchyma. Utilizing this tool, we profiled labeled cells during development and in several disease models, uncovering convergence and context-dependent differences in PAM and DAM gene expression. Through long-term tracking, we demonstrated microglial state plasticity. Lastly, we specifically depleted DAMs in demyelination, revealing their roles in disease recovery. Together, we provide a versatile genetic tool to characterize microglial states in CNS development and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299637PMC
http://dx.doi.org/10.1016/j.immuni.2024.05.005DOI Listing

Publication Analysis

Top Keywords

microglial states
16
development disease
12
genetic tool
8
pams dams
8
microglial
5
inducible genetic
4
tool track
4
track manipulate
4
manipulate specific
4
specific microglial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!