Novel sunlight-induced monochloramine activation system for efficient microcontaminant abatement.

Water Res

Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong Province 529020, China; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, Guangdong Province, China. Electronic address:

Published: July 2024

As an eco-friendly and sustainable energy, solar energy has great application potential in water treatment. Herein, simulated sunlight was for the first time utilized to activate monochloramine for the degradation of environmental organic microcontaminants. Various microcontaminants could be efficiently degraded in the simulated sunlight/monochloramine system. The average innate quantum yield of monochloramine over the wavelength range of simulated sunlight was determined to be 0.068 mol/Einstein. With the determined quantum yield, a kinetic model was established. Based on the good agreement between the simulated and measured photolysis and radical contributions to the degradation of ibuprofen and carbamazepine, the major mechanism of monochloramine activation by simulated sunlight was proposed. Chlorine radical (Cl) and hydroxyl radical (HO) were major radicals responsible for microcontaminant degradation in the system. Moreover, the model facilitated a deep investigation into the effects of different reaction conditions (pH, monochloramine concentration, and water matrix components) on the degradation of ibuprofen and carbamazepine, as well as the roles of the involved radicals. The differences between simulated and measured degradation data of each microcontaminant under all conditions were less than 10 %, indicating the strong reliability of the model. The model could also make good prediction for microcontaminant degradation in the natural sunlight/monochloramine system. Furthermore, the formation of disinfection byproducts (DBPs) was evaluated at different oxidation time in simulated sunlight/monochloramine with and without post-chloramination treatment. In real waters, organic components showed more pronounced suppression on microcontaminant degradation efficiency than inorganic ions. This study provided a systematic investigation into the novel sunlight-induced monochloramine activation system for efficient microcontaminant degradation, and demonstrated the potential of the system in practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.121798DOI Listing

Publication Analysis

Top Keywords

microcontaminant degradation
16
monochloramine activation
12
simulated sunlight
12
novel sunlight-induced
8
sunlight-induced monochloramine
8
activation system
8
system efficient
8
efficient microcontaminant
8
degradation
8
simulated sunlight/monochloramine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!