Resumption of growth in osmotically upshocked Escherichia coli was effected only by an external stimulus (betaine treatment) in severe upshock, but was spontaneous in less severe upshock. In either case, growth resumption was preceded by a reversal of glucose transport inhibition, and that reversal was preceded by a recovery of cell volume. We hypothesize that deformation of the membrane by osmotic stress results in conversion of a membrane component of the transport system to a less functional conformation, which results in the inhibition of transport and the consequent inhibition of growth. Relief of the deformation would then allow recovery to a more functional conformation, reversal of transport inhibition, and then resumption of growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-291x(85)90625-4DOI Listing

Publication Analysis

Top Keywords

cell volume
8
osmotically upshocked
8
upshocked escherichia
8
escherichia coli
8
resumption growth
8
severe upshock
8
transport inhibition
8
functional conformation
8
transport
5
growth
5

Similar Publications

Introduction: Chronic ischemic heart failure is a major global health issue despite advancements in therapy. Stem cell (SC) therapy has emerged as a potential treatment, but its effectiveness remains uncertain. This study aimed to systematically review and meta-analyze the current evidence on SC therapy's efficacy.

View Article and Find Full Text PDF

Background: Remote ischemic conditioning (RIC) has been implicated in cross-organ protection in cerebrovascular disease, including stroke. However, the lack of a consensus protocol and controversy over the clinical therapeutic outcomes of RIC suggest an inadequate mechanistic understanding of RIC. The current study identifies RIC-induced molecular and cellular events in the blood, which enhance long-term functional recovery in experimental cerebral ischemia.

View Article and Find Full Text PDF

Lung cancer is the third most prevalent cancer, following breast cancer in women and prostate cancer in men. However, it remains the leading cause of cancer-related mortality. As treatment options have advanced, the significance of accurate diagnosis has increased, enabling targeted and more personalized therapeutic treatments.

View Article and Find Full Text PDF

The stomatal phenotype is a crucial microscopic characteristic of the leaf surface, and modulating the stomata of maize leaves can enhance photosynthetic carbon assimilation and water use efficiency, thereby playing a vital role in maize yield formation. The evolving imaging and image processing technologies offer effective tools for precise analysis of stomatal phenotypes. This study employed Jingnongke 728 and its parental inbred to capture stomatal images from various leaf positions and abaxial surfaces during key reproductive stages using rapid scanning electron microscopy.

View Article and Find Full Text PDF

Conditions favoring phagotrophy can lead to larger cell sizes in some freshwater mixoplankton.

J Plankton Res

January 2025

Department of Biological Sciences, University of Quebec at Montréal (UQAM), C.P. 8888 Succ. Centre-Ville, Montréal, QC, H3P 3P8, Canada.

Cell size is a critical regulator of many metabolic processes in protists. We explored whether body size and abundances vary consistently in phytoplankton capable of both autotrophy and heterotrophy (mixoplankton) by manipulating environmental stoichiometric conditions in a mesocosm experiment. We applied two allochthonous subsidy treatments: high C: nutrient ratios (leaves) should favour bacterivory through phagotrophy, while low ratios (insects) should favour autotrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!