Di-(2-ethylhexyl)-phthalate (DEHP), as distinctive endocrine disrupting chemicals, has become a global environmental pollutant harmful to human and animal health. However, the impacts on offspring and mothers with maternal DEHP exposure are largely unknown and the mechanism remains elusive. We established DEHP-exposed maternal mice to investigate the impacts on mother and offspring and illustrate the mechanism from multiple perspectives. Pregnant mice were administered with different doses of DEHP, respectively. Metagenomic sequencing used fecal and transcriptome sequencing using placentas and livers from offspring have been performed, respectively. The results of the histopathology perspective demonstrated that DEHP exposure could disrupt the function of islets impact placentas and fetus development for maternal mice, and cause the disorder of glucose and lipid metabolism for immature offspring mice, resulting in hyperglycemia. The results of the metagenome of gut microbial communities indicated that the dysbiosis of gut microbiota in mother and offspring mice and the dominant phyla transformed through vertical transmission. Transcriptome analysis found DEHP exposure induced mutations of Ahcy and Gstp3, which can damage liver cells and affect the metabolism of the host. DEHP exposure harms pregnant mice and offspring by affecting gene expression and altering metabolism. Our results suggested that exposure of pregnant mice to DEHP during pregnancy and lactation increased the risk of metabolic disorders by altering key genes in liver and gut microbiota, and these results provided new insights into the potential long-term harms of DEHP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2024.116494 | DOI Listing |
Chemosphere
January 2025
Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Córdoba, Argentina. Electronic address:
DEHP is a prevalent phthalate with wide industrial applications and well-documented endocrine-disrupting effects, including the potential disruption of AR signaling in different tissues. The present study aimed to investigate the effects of gestational and lactational exposure to environmentally relevant DEHP concentrations on AR expression and subcellular localization in the pituitary gland, the master endocrine organ, with a focus on gonadotroph cells by in vivo and in vitro approaches. After DEHP exposure during gestation and lactation, a sex-specific modulation was detected in AR-positive pituitary cells and AR protein expression as assessed through flow cytometry and western blot.
View Article and Find Full Text PDFSe Pu
February 2025
Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100214, China.
A comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOF-MS) method was developed to analyze 25 traditional phthalate esters (PAEs) and 19 novel alternatives in indoor dust samples. PAEs are ubiquitous in indoor environments because they are widely used as plasticizers in a variety of consumer products, and potential health concerns have prompted the need for effective monitoring methods. In this study, dust samples were collected from various indoor settings in a university campus, including classrooms, cafeterias, laboratories, and dormitories, and were subsequently ultrasonically extracted with hexane-dichloromethane (1∶1, v/v) solution for 30 min.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
Chemicals in plastics raise significant concerns for potential adverse environmental and health impacts. However, dissipation kinetics and fluxes of chemicals from outdoor plastic products remain largely uncharacterized, hindering the accurate assessment of their environmental exposure. This study quantified outdoor dissipation profiles for 20 "priority" chemicals, including sunscreens (benzophenone, benzophenone-3, octyl salicylate, etc.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Biomedical and Translational Sciences Institute, Neuroscience Division, Athens, GA, United States.
Significance: Women are at increased risk for mood disorders, which may be partly attributed to exposure to endocrine-disrupting chemicals (EDCs) during sensitive periods such as pregnancy. Exposure during these times can impact brain development in the offspring, potentially leading to mood disorders in later life. Additionally, fluctuating levels of endogenous estrogens, as seen during pregnancy, or the use of oral contraceptives, can further elevate this risk.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Urology, An-Nan Hospital, China Medical University, Tainan, Taiwan. Electronic address:
Phthalate exposure is linked to prostate enlargement through sex hormonal changes and oxidative stress. However, its role and action mechanism in prostate cancer remain unclear. This study examined two patient cohorts: 204 patients undergoing prostate biopsy (24 benign and 180 malignancies) and 85 with confirmed prostate cancer receiving robotic-assisted radical prostatectomy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!