Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Atomically dispersed iron-nitrogen-carbon (FesbndNsbndC) materials have been considered ideal catalysts for the oxygen reduction. Unfortunately, designing and adjusting the electronic structure of single-atom Fe sites to boost the kinetics and activity still faces grand challenges. In this work, the coordination environment engineering is developed to synthesize the Fe/NSC catalyst with the tailored N, S co-coordinated Fe atomic site (Fe-NS site). The structural characterizations and theoretical calculations demonstrate that the incorporation of sulfur can optimize the charge distribution of Fe atoms to weaken the adsorption of OH* and facilitate the desorption of OH*, thus leading to enhanced kinetics process and intrinsic activity. As a result, the S-modified Fe/NSC exhibits outstanding catalytic activity with the half-wave potentials (E) of 0.915 V and 0.797 V, as well as good stability, in alkaline and acidic electrolytes, respectively. Impressively, the excellent performance of Fe/NSC is further confirmed in Zn-air batteries (ZABs) and fuel cells, with high peak power densities (146 mW cm and 0.259 W cm).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.05.197 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!