Coal-based carbon nanosheets contained carbon microfibers modified with grown carbon nanotubes as efficient air electrode material for rechargeable zinc-air batteries.

J Colloid Interface Sci

Research Group of Functional Materials for Electrochemical Energy Conversion, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, Liaoning, China; Research Institute of Clean Energy and Fuel Chemistry, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China; Key Laboratory for Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Qianshan Middle Road 185, Anshan, China. Electronic address:

Published: October 2024

Coal-based oxygen electrocatalysts hold immense promise for cost-effective applications in rechargeable Zn-air batteries (ZABs) and the value-added, clean utilization of traditional coal resources. Herein, an electrospun membrane electrode comprising coal-derived carbon nanosheets and directly grown carbon nanotubes (CNS/CMF@CNT) was successfully synthesized. The hierarchical porous structure of the electrode, composed of multiple components, significantly facilitates mass and ion transportation, resulting in exceptional electrochemical performance. Employing Fe as the catalyst for CNT growth, the CNS/CMF@CNT electrode exhibits a remarkable onset potential of 0.96 V and a half-wave potential of 0.87 V in the oxygen reduction reaction (ORR). In-situ surface-enhanced Raman spectroscopy reveals that hydroxyl radical desorption on the surface of CNS/CMF@CNT(Fe) is the rate-determining step of the ORR. Notably, the aqueous ZAB featuring the CNS/CMF@CNT(Fe) electrode achieved a peak power density of 216.0 mW cm at a current density of 414 mA cm and maintained a voltage efficiency of 65.1 % after 2000 charge/discharge cycles at 5 mA cm. Furthermore, the all-solid-state ZAB incorporating this electrode displayed an open-circuit voltage of 1.43 V, a peak power density of 70.1 mW cm at a current density of 110 mA cm, and a voltage efficiency of 66.5 % after 150 charge/discharge cycles. The utilization of abundant coal as the raw material for electrode fabrication not only brings conceivable economic benefits in ZAB construction, but also commendably advances the effective application of traditional coal resources in a more sustainable manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.05.191DOI Listing

Publication Analysis

Top Keywords

carbon nanosheets
8
grown carbon
8
carbon nanotubes
8
traditional coal
8
coal resources
8
peak power
8
power density
8
current density
8
voltage efficiency
8
charge/discharge cycles
8

Similar Publications

Hydrogen-bond-driven 1D assembly of carbon nanotubes dispersed in organic solvents remains challenging owing to difficulties associated with achieving high oxidation levels and uniform dispersion. Here, we introduced a bioinspired wet-spinning method that utilizes highly oxidized single-walled carbon nanotubes dispersed in organic solvents without superacid or dispersants. By incorporating submicrometer-sized graphene oxide nanosheets, we facilitated the ejection of 1.

View Article and Find Full Text PDF

Quantitative profiling and mapping of small molecules by laser desorption/ionization mass spectrometry: combinations of carbon-based nano-matrices and sample preparation protocols.

Analyst

January 2025

Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu Province 215123, China.

The choices of matrices and protocols for sample deposition are critical factors, which impact each other in the matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). Previous reports on MALDI MS matrices have only compared their performances in terms of their MS signal intensities and provided optical microphotos or MALDI MS images of sample spots but typically lacked quantitative evaluation. Therefore, there is an urgent need to develop a multivariate model to evaluate the performance of different combinations of matrices and sample protocols.

View Article and Find Full Text PDF

Rapid Charge Transfer Endowed by Heteroatom Doped Z-Scheme Van Der Waals Heterojunction for Boosting Photocatalytic Hydrogen Evolution.

Small

January 2025

College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, P. R. China.

Constructing heterojunctions between phase interfaces represents a crucial strategy for achieving excellent photocatalytic performance, but the absence of sufficient interface driving force and limited charge transfer pathway leads to unsatisfactory charge separation processes. Herein, a doping-engineering strategy is introduced to construct a In─N bond-bridged InS nanocluster modified S doped carbon nitride (CN) nanosheets Z-Scheme van der Waals (VDW) heterojunctions (InS/CNS) photocatalyst, and the preparation process just by one-step pyrolysis using the pre-coordination confinement method. Specifically, S atoms doping enhances the bond strength of In─N and forms high-quality interfacial In─N linkage which serves as the atomic-level interfacial "highway" for improving the interfacial electrons migration, decreasing the charge recombination probability.

View Article and Find Full Text PDF

Lithium-sulfur batteries have been recognized as one of the excellent candidates for next-generation energy storage batteries because of their high energy density and low cost and low pollution. However, lithium-sulfur batteries have been challenged by low conductivity, low sulfur utilization, poor cycle life, and the shuttle effect of polysulfides. To address these problems, we report here an independent mixed sulfur host.

View Article and Find Full Text PDF

Modulating the Oxygen Evolution Reaction of Single-Crystal Cobalt Carbonate Hydroxide via Surface Fe Doping and Facet Dependence.

J Phys Chem Lett

January 2025

Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.

The oxygen evolution reaction (OER) is a critical half-reaction in water splitting and metal-air cells. The sensitivity of the OER to the composition and structure of the electrocatalyst presents a significant challenge in elucidating the structure-property relationship. In this study, highly stable single-crystal cobalt carbonate hydroxide [Co(OH)CO, CoCH] was used as a model to investigate the correlations among structure, composition, and reactivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!