Despite the prevalence of co-infections and the association of over 50 viral and 46 bacterial pathogens with pig diseases, little is known about their simultaneous occurrence, particularly in commercial pig farming environments where health programs are in place. To address this knowledge gap, this study aimed to evaluate the pathogen threshold of respiratory and enteric pathogens in pig herds using the Pork MultiPath™ (PMP1 and PMP2, respiratory and enteric respectively) technology, which detects multiple pathogens simultaneously in a single reaction with high sensitivity and specificity. In this study the most prevalent respiratory pathogens, Mycoplasma hyrohinis, Pasteurella multocida, and Haemophilus parasuis detected by PMP1 were effectively controlled during the nursery stage through strategic treatment with tiamulin. Even though the major respiratory incidences were reduced, the recorded coughing and sneezing rates were associated with the levels of H. parasuis and M. hyrohinis, which were set at 1356 and 1275 copies/reaction, respectively. In addition, one of the identified co-infection patterns indicated a strong relationship between the occurrence of H. parasuis and M. hyorhinis at the sample and pen levels, highlighting the high likelihood of detecting these two pathogens together. Testing with enteric panel PMP2 revealed that the most frequently detected virulence factors during the early nursery stage were Escherichia coli genes for toxins - ST1, ST2, and fimbriae - F4 and F18. Moreover, a co-infection with Rotavirus B and C was often observed during the nursery stage, and a strong positive correlation between these two markers has been identified. Additionally, the levels of several markers, namely E. coli F4, F5, F18, LT, ST1, and ST2, have been associated with a higher likelihood of sickness in pig populations. In addition, the onset of Brachyspira pilosicoli during the nursery and grower stages was found to be associated with an increased risk of diarrhoea, with a set threshold at around 500 copies/reaction. Although simultaneous detection of multiple pathogens is not yet widely used in the pig industry, it offers a significant advantage in capturing the diversity and interactions of co-infections. Testing pooled samples with Pork MultiPath™ is cost-effective and practical to regularly monitor the health status of pig populations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prevetmed.2024.106237DOI Listing

Publication Analysis

Top Keywords

pathogens pig
16
pig populations
12
nursery stage
12
respiratory enteric
8
pork multipath™
8
multiple pathogens
8
st1 st2
8
pathogens
7
pig
7
oral fluids
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!