Effective removal of organic UV filters from aquatic environmental compartments and swimming waters is very important because these substances are hazardous to humans and wildlife at low concentrations and act as endocrine disruptors. Therefore, the aim of the present article is to determine the extraction efficiencies of hydrophobic deep eutectic solvents (HDES) for the selected UV filters based on benzophenone structure (benzophenone, 2,4-dihydroxybenzophenone, 2,2´,4,4´-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2´-dihydroxy-4-methoxybenzophenone, 4-methacryloxy-2-hydroxybenzophenone) from aqueous matrices. For this purpose, six HDESs based on dl-menthol in combination with caprylic, decanoic and lauric acid are prepared and compared with referent terpene solvents such as terpineol and linalool. The effect of various parameters such as HDES composition, volume ratio, frequency and shaking time are studied. The highest extraction efficiency is shown by HDES of menthol:caprylic acid (1:1) composition at the aqueous:organic phase volume ratio of 1:1, shaking frequency of 1500 rpm and shaking time of 15 min. The achieved extraction efficiencies are higher than 99.6 % for all benzophenones studied in the purification of stagnant pond water, swimming pool water and river water samples. After a simple and fast sample treatment, the residual levels of benzophenones in the waters are controlled by a newly developed sensitive HPLC-MS/MS method with LOQs in the range of 0.7 - 5.0 ng/mL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2024.116528 | DOI Listing |
J Hazard Mater
January 2025
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China; School of Materials Science and Engineering, Xinjiang Engineering Research Center of Environmental and Functional Materials, Xinjiang University, Urumqi, 830017, Xinjiang, PR China. Electronic address:
Antibiotic residues pose a significant threat to global health. Traditional detection methods for antibiotics are cumbersome, time-consuming and often incapable of achieving non-destructive detection at low temperatures. This research introduces a groundbreaking innovation in antibiotic detection: a flexible Surface-Enhanced Raman Scattering substrate based on a silver composite deep eutectic solvent (DES) gel, specifically engineered for low-temperature antibiotic detection.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food Science and Technology, Hunan Agricultural University, 410128, Hunan, China. Electronic address:
This study explored a facile method for converting macadamia nutshells into bio-based nanomaterials, including cellulose nanofibers (CNFs) and lignin nanoparticles (LNPs), through deep eutectic solvent (DES) pretreatment coupled with a nanofabrication strategy. Comparisons of the physicochemical, morphological, and structural properties of the CNF and LNPs produced through acidic choline chloride/oxalic acid dihydrate (ACDES) and alkaline KCO/glycerol DES (ALDES) pretreatments were conducted using SEM, TEM, FTIR, XRD, TGA, GPC and 2D NMR. The CNFs obtained from ACDES pretreatment (ACCNFs) exhibited uniform and long filament-like structures with shorter whisker-like nanocrystals.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. Electronic address:
Catalytic depolymerization is a favorable option for the valorization of industrial lignin. In this study, a new strategy was demonstrated for the efficient reductive depolymerization of industrial lignin based on a complex solvent of choline chloride-lactic acid (ChCl-LA) DES integrated with ethanol and a C-supported N-doped niobium-based catalyst with industrial lignin as carbon source (NBC@N-LC). It was found that the introduction of ethanol significantly improved the conversion of industrial lignin in ChCl-LA.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry and Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:
A vast sum of fish waste is being annually discarded by marine fishing industries imposing serious environmental pollution concerns. However, these aquatic discarded matters are captivating sources of collagen, a fibrous protein with eminent social and economic relevance. Collagen is conventionally recovered using outdated complex processes requiring many reagents, multiple steps, and extended periods.
View Article and Find Full Text PDFBioresour Technol
January 2025
University of Zagreb Faculty of Chemical Engineering and Technology, Marulićev trg 19, HR-10000 Zagreb, Croatia. Electronic address:
Efforts to reduce the impact of chemical processes on the environment are leading to a shift to enzymatic alternatives, with laccases standing out for their versatile substrate oxidation capabilities. This study addresses the improvement of biocatalytic reactions by deep eutectic solvents (DES), in particular DES-based aqueous two-phase systems (ATPS) for the extraction of biomolecules. Continuous laccase extraction from crude samples was achieved using a DES-based ATPS, which was first optimized in a batch extractor and later intensified in a microextractor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!