In this paper, we design a new class of coupled neural networks with stochastically intermittent disturbances, in which the perturbation mechanism is different from other existed random neural networks. It is significant to construct the new models, which can simulate a class of the real neural networks in the disturbed environment, and the fast synchronization control strategies are studied by an adjustable parameter α. A controller with coupling signal is designed to study the exponential synchronization problem, meanwhile, another effective controller with not only adjustable synchronization rate but also with infinite gain avoided is used to investigate the preset-time synchronization. The fast synchronization conditions have been obtained by Lyapunov stability principle, Laplacian matrix and some inequality techniques. A numerical example shows the effectiveness of the control schemes, and the different control factors for synchronization rate are given to discuss the control effect. In particular, the image encryption-decryption based on drive-response networks has been successfully applied.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.106404DOI Listing

Publication Analysis

Top Keywords

neural networks
16
fast synchronization
12
synchronization control
8
coupled neural
8
synchronization rate
8
synchronization
6
control
5
networks
5
control application
4
application encryption-decryption
4

Similar Publications

Weighted Echo State Graph Neural Networks Based on Robust and Epitaxial Film Memristors.

Adv Sci (Weinh)

January 2025

College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.

Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.

View Article and Find Full Text PDF

Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment.

View Article and Find Full Text PDF

Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.

View Article and Find Full Text PDF

Graph data is essential for modeling complex relationships among entities. Graph Neural Networks (GNNs) have demonstrated effectiveness in processing low-order undirected graph data; however, in complex directed graphs, relationships between nodes extend beyond first-order connections and encompass higher-order relationships. Additionally, the asymmetry introduced by edge directionality further complicates node interactions, presenting greater challenges for extracting node information.

View Article and Find Full Text PDF

This study presents a novel approach to identifying meters and their pointers in modern industrial scenarios using deep learning. We developed a neural network model that can detect gauges and one or more of their pointers on low-quality images. We use an encoder network, jump connections, and a modified Convolutional Block Attention Module (CBAM) to detect gauge panels and pointer keypoints in images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!