This study examined the distinct effects of algae polysaccharides (AP), namely sodium alginate (SA), fucoidan (FU), and laminarin (LA), on the aggregation of nanoplastics (NP) in seawater, as well as their subsequent transport in seawater-saturated sea sand. The pristine 50 nm NP tended to form large aggregates, with an average size of approximately 934.5 ± 11 nm. Recovery of NP from the effluent (M) was low, at only 18.2 %, and a ripening effect was observed in the breakthrough curve (BTC). Upon the addition of SA, which contains carboxyl groups, the zeta (ζ)-potential of the NP increased by 2.8 mV. This modest enhancement of electrostatic interaction with NP colloids led to a reduction in the aggregation size of NP to 598.0 ± 27 nm and effectively mitigated the ripening effect observed in the BTC. Furthermore, SA's adherence to the sand surface and the resulting increase in electrostatic repulsion, caused a rise in M to 27.5 %. In contrast, the introduction of FU, which contains sulfate ester groups, resulted in a surge in ζ-potential of the NP to -27.7 ± 0.76 mV. The intensified electrostatic repulsion between NP and between NP and sand greatly increased M to 45.6 %. Unlike the effects of SA and FU, the addition of LA, a neutral compound, caused a near disappearance of ζ-potential of NP (-3.25 ± 0.68 mV). This change enhanced the steric hindrance effect, resulting in complete stabilization of particles and a blocking effect in the BTC of NP. Quantum chemical simulations supported the significant changes in the electrostatic potential of NP colloids induced by SA, FU and LA. In summary, the presence of AP can induce variability in the mobility of NP in seawater-saturated porous media, depending on the nature of the weak, strong, or non-electrostatic interactions between colloids, which are influenced by the structure and functionalization of the polysaccharides themselves. These findings provide valuable insights into the complex and variable behavior of NP transport in the marine environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.121807 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!