The transmission of antibiotic-resistant bacteria among wild animal species may hold significant epidemiological implications. However, this issue is seldom explored due to the perceived complexity of these systems, which discourages experimental investigation. To address this knowledge gap, we chose a configuration of birds and mammals coexisting in an urban green area as a research model: the rook Corvus frugilegus and the striped field mouse Apodemus agrarius. The indirect transmission of antimicrobial-resistant bacteria between these species is possible because rodents inhabiting rook colonies frequently come into contact with the birds' faeces and pellets. The study was conducted in two cities in eastern Poland (Central Europe) - Lublin and Chełm. Among 71 Escherichia (E.) coli isolates studied, 19.7% showed resistance to from one to six of the antibiotics tested, with much higher prevalence of antibiotic-resistant bacteria in the birds (32%) than in the rodents (7%). Whole genome sequencing was performed on 10 selected E. coli isolates representing similar resistance phenotypes. The following antimicrobial resistance genes were detected: bla, tet(A), tet(B), aph(6)-Id, aph(3'')-Ib, aadA1, aadA2, catA1, floR, cmlA, sul2, sul3, dfrA14, and dfrA2. Birds from the same city and also from both neighbouring cities shared E. coli bacteria with the same sequence types, whereas isolates detected in birds were not found to have been transferred to the mammalian population, despite close contact. This demonstrates that even intensive exposure to sources of these pathogens does not necessarily lead to effective transmission of antibiotic-resistant E. coli strains between birds and mammals. Further efforts should be dedicated to investigating actual transmission of antimicrobial-resistant bacteria in various ecological systems, including those that are crucial for public health, such as urban environments. This will facilitate the development of more accurate models for epidemiological threats and the formulation of well-balanced decisions regarding the coexistence of humans and urban wildlife.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2024.110130 | DOI Listing |
Antibiotics (Basel)
January 2025
Shandong Center for Animal Disease Control and Prevention, Shandong Centre for Zoonotic Disease Surveillance, Jinan 250100, China.
Antimicrobial resistant (AMR) () isolated from animals may lead to antibiotic treatment failure and economic losses to farmers. The co-existence of antimicrobial resistant genes (ARGs) in the same isolate presents a major challenge for the prevention and control of infection in multidrug-resistant (MDR) Gram-negative organisms. There have been a lot of studies on the antibiotic resistance of in livestock and poultry, but few of them have focused on clinical pathogens.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Laboratory of Veterinary Epidemiology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea.
There are global concerns regarding the transmission of antimicrobial-resistant pathogens from animals to humans. Especially, companion animals are increasingly recognized as a potential source due to their close interactions with people, despite a limited number of reported cases. Although, social demands regarding comprehensive surveillance for antimicrobial resistance (AMR) among companion animals are highlighted, there is a lack of a relevant system in South Korea.
View Article and Find Full Text PDFBr Poult Sci
January 2025
Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.
1. is an opportunist pathogen of animals, including food-producing ones and humans. Chickens may be a notable source of pathogenic and antimicrobial resistant for transmission to humans.
View Article and Find Full Text PDFClin Microbiol Rev
January 2025
Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.
SUMMARYNumerous questions persist regarding the role of companion animals as potential reservoirs of antimicrobial-resistant organisms that can infect humans. While relative antimicrobial usage in companion animals is lower than that in humans, certain antimicrobial-resistant pathogens have comparable colonization rates in companion animals and their human counterparts, which inevitably raises questions regarding potential antimicrobial resistance (AMR) transmission. Furthermore, the close contact between pets and their owners, as well as pets, veterinary professionals, and the veterinary clinic environment, provides ample opportunity for zoonotic transmission of antimicrobial-resistant pathogens.
View Article and Find Full Text PDFFoodborne Pathog Dis
January 2025
Department of Animal and Plant Quarantine Agency, Bacterial Disease Division, Gimcheon-si, Republic of Korea.
Antimicrobial-resistant bacterial contamination of meat poses a significant global public health risk. We aimed to determine antimicrobial resistance profiles and trends of recovered from carcasses of healthy food-producing animals in South Korea during 2010-2023. In total, 4748 isolates obtained from cattle ( = 1582), pigs ( = 1572), and chickens ( = 1594) were assessed for susceptibility to 12 antimicrobials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!