A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Controllable ion design in flexible metal organic framework film for performance regulation of electrochemical biosensing. | LitMetric

Controllable ion design in flexible metal organic framework film for performance regulation of electrochemical biosensing.

Biosens Bioelectron

Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, PR China; Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, PR China; Yiwu Research Institute of Fudan University, Yiwu, 322000, Zhejiang, PR China; International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, PR China.

Published: September 2024

The limitations of solvent residues, unmanageable film growth regions, and substandard performance impede the extensive utilization of metal-organic framework (MOF) films for biosensing devices. Here, we report a strategy for ion design in gas-phase synthesized flexible MOF porous film to attain universal regulation of biosensing performances. The key fabrication process involves atomic layer deposition of induced layer coupled with lithography-assisted patterning and area-selective gas-phase synthesis of MOF film within a chemical vapor deposition system. Sensing platforms are subsequently formed to achieve specific detection of HO, dopamine, and glucose molecules by respectively implanting Co, Fe, and Ni ions into the network structure of MOF films. Furthermore, we showcase a practical device constructed from Co ions-implanted ZIF-4 film to accomplish real-time surveillance of HO concentration at mouse wound. This study specifically elucidates the electronic structure and coordination mode of ion design in MOF film, and the obtained knowledge aids in tuning the electrochemical property of MOF film for advantageous sensing devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2024.116433DOI Listing

Publication Analysis

Top Keywords

ion design
12
mof film
12
mof films
8
film
7
mof
6
controllable ion
4
design flexible
4
flexible metal
4
metal organic
4
organic framework
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!