Understanding the nonlinear response of light and materials is crucial for fundamental physics and next-generation electronic devices. In this work, we have investigated the second-order nonlinear bulk photovoltaic (BPV) and bulk spin photovoltaic (BSPV) effects in the piezoelectric binary materials T-IV-VI and T-V-V (IV = Ge, Sn; VI = S, Se; and V = P, As, Sb, Bi). The independent nonzero conductivity tensors of charge current are derived for these binaries through the symmetry analysis, along with the mechanism for generating pure spin current. These binaries, with their unique folded structure, exhibit significant charge and spin currents under illumination. Furthermore, we find that strain engineering can effectively modulate charge/spin currents by influencing charge density distribution and built-in electric field due to the piezoelectric effect. Our research suggests that the piezoelectric binary materials possess enormous and tunable charge/spin currents, underscoring their potential for applications in nonlinear flexible optoelectronics and spintronics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c01257DOI Listing

Publication Analysis

Top Keywords

piezoelectric binary
12
binary materials
12
enormous tunable
8
materials t-iv-vi
8
t-iv-vi t-v-v
8
charge/spin currents
8
tunable bulk
4
bulk charge/spin
4
charge/spin photovoltaic
4
piezoelectric
4

Similar Publications

Synergism of piezoelectricity and photocatalysis is an effective approach for pollutant degradation and removal, and has garnered considerable attention. Nonetheless, great challenges still remain in recombination and slow migration rate of charge carriers. For response, a novel Three-in-One strategy based on MXene/ZnS/FeO (MZF) was developed to enhance the piezoelectric photocatalytic activity via achieving a triple effect: Dual Schottky heterojunction, Interface electric field, and Oxygen vacancy.

View Article and Find Full Text PDF

Artificial Control of Giant Converse Magnetoelectric Effect in Spintronic Multiferroic Heterostructure.

Adv Sci (Weinh)

December 2024

Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.

To develop voltage-controlled magnetization switching technologies for spintronics applications, a highly (422)-oriented CoFeSi layer on top of the piezoelectric PMN-PT(011) is experimentally demonstrated by inserting a vanadium (V) ultra-thin layer. The strength of the growth-induced magnetic anisotropy of the (422)-oriented CoFeSi layers can be artificially controlled by tuning the thicknesses of the inserted V and the grown CoFeSi layers. As a result, a giant converse magnetoelectric effect (over 10 s m) and a non-volatile binary state at zero electric field are simultaneously achieved in the (422)-oriented CoFeSi/V/PMN-PT(011) multiferroic heterostructure.

View Article and Find Full Text PDF

A phase demodulation algorithm based on an adaptive polar transform is proposed that can achieve picometer-scale measurements in orbital angular momentum (OAM) interferometry. The proposed algorithm converts the rotational movement in a petal-shaped interference pattern into translational movement of the grayscale projection curves, so that can be easily measured using correlation operations to determine the pixel displacement in determining the rotation angle. Displacements ranging from -120 nm to 120 nm have been measured for various topological charges, with a minimum average deviation of 0.

View Article and Find Full Text PDF

Fluorite-structured binary oxide ferroelectrics exhibit robust ferroelectricity at a thickness below 10 nm, making them highly scalable and applicable for high-end semiconductor devices. Despite this promising prospect, achieving highly reliable ferroelectrics still demands a significant thermal budget to form a ferroelectric phase, being a hurdle for their use in high-end complementary metal oxide semiconductor (CMOS) processing. Here, we report a robust ferroelectric behavior of an 8 nm-thick ZrO film deposited plasma-enhanced atomic layer deposition at 300 °C on a (002)-oriented Ru without any post-annealing process, demonstrating high compatibility with CMOS processing.

View Article and Find Full Text PDF

Efficient Creation of Jettability Diagrams Using Active Machine Learning.

3D Print Addit Manuf

August 2024

Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut, USA.

The ability to jet a wide variety of materials consistently from print heads remains a key technical challenge for inkjet-based additive manufacturing processes. Drop watching is the most direct method for testing new inks and print head designs but such experiments are also resource consuming. In this work, a data-efficient machine learning technique called active learning is used to construct detailed jettability diagrams that identify complex regions corresponding to "," "," and "," rather than only individually sampled points.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!