Proper cacao (Theobroma cacao L.) plant genotyping is mandatory for the conservation and use of the species genetic resources. A set of 15 international standard SSR markers was assumed as universal cacao genotyping system. Recently, different SNPs and SNP genotyping techniques have been exploited in cacao. However, a consensus on which to use has not been reached yet, driving the search for new approaches. To validate a new ddRADseq protocol for cacao genotyping, we compared the performances for population analysis of a dataset with 7,880 SNPs obtained from ddRADseq and the genotypic data from the aforementioned SSR set, using 158 cacao plants from productive farms and gene bank. Four genetic groups were identified with STRUCTURE and ADMIXTURE softwares using SSR and SNP data, respectively. Similarities of cacao ancestries among these groups allowed the identification of analogous pairs of groups of individuals, referred to as: G1SSR/G1SNP, G2SSR/G2SNP, G3SSR/G3SNP, G4SSR/G4SNP, whether SSRs or SNPs were used. Both marker systems identified Amelonado and Criollo as the most abundant cacao ancestries among all samples. Genetic distance matrices from both data types were significantly similar to each other according to Mantel test (p < 0.0001). PCoA and UPGMA clustering mostly confirmed the identified genetic groups. AMOVA and FST pairwise comparison revealed a moderate to very large genetic differentiation among identified groups from SSR and SNP data. Genetic diversity parameters from SSR (Hobs = 0.616, Hexp = 0.524 and PIC = 0.544) were higher than that from SNP data (0.288, 0.264, 0.230). In both cases, genetic groups carrying the highest Amelonado proportion (G1SSR and G1SNP) had the lowest genetic diversity parameters among the identified groups. The high congruence among population analysis results using both systems validated the ddRADseq protocol employed for cacao SNP genotyping. These results could provide new ways for developing a universal SNP-based genotyping system very much needed for cacao genetic studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142705PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304753PLOS

Publication Analysis

Top Keywords

ssr snp
12
population analysis
12
cacao
12
ddradseq protocol
12
cacao genotyping
12
genetic groups
12
snp data
12
genetic
9
theobroma cacao
8
validate ddradseq
8

Similar Publications

Comparative plastomic analysis of cultivated Dioscorea polystachya and its close relatives provides insights on the inter- and intraspecific phylogenies and potential wild origins of domestication.

BMC Plant Biol

December 2024

Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.

Background: Dioscorea polystachya and its closely related species are original plants of the tuber crop "yam", which had been intensively use for medicinal and food purposes and widely cultivated in northern China and its surrounding areas with a long history. Many cultivars of these species are often confused with one another because of similar tuber morphology, however, conventional DNA barcoding faces practical limitations restricting the method to effectively identify closely related species. In addition, phylogenetic relationships among various cultivar groups of Chinese yam (D.

View Article and Find Full Text PDF

Paratuberculosis in South American camelids: two independent cases in alpacas in Germany.

BMC Vet Res

December 2024

Chemical and Veterinary Investigation Office Westphalia, Arnsberg, Germany.

Background: Paratuberculosis, caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a chronic granulomatous enteritis that affects domestic and wild ruminants and camelids. The disease has rarely been reported in alpacas in Germany. This publication describes epidemiologically independent cases of paratuberculosis in two alpacas in Germany.

View Article and Find Full Text PDF

Panax species, particularly Panax ginseng, Panax quinquefolius, and Panax vietnamensis are renowned for their medicinal properties and economic value. Of these, the endemic P. vietnamensis species (native to Vietnam, Laos, and southern China) is currently receiving focused attention due to its special ginsenosides accumulation in comparison to the others.

View Article and Find Full Text PDF

GWAS combined with linkage analysis reveals major QTLs and candidate genes of salt tolerance in rice seedlings.

Front Plant Sci

November 2024

Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China.

Article Synopsis
  • - Soil salinization limits crop yields globally, especially affecting rice seedlings, which are vulnerable to salt stress and can lead to reduced growth and yield.
  • - A study conducted genome-wide association studies (GWAS) and linkage analysis to evaluate salt tolerance in rice, identifying 15 major quantitative trait loci (QTLs) and a key candidate gene related to salt tolerance found on chromosome 2.
  • - The study concluded that the identified gene negatively regulates salt tolerance during the seedling stage, offering new resources for breeding salt-tolerant Japonica rice varieties.
View Article and Find Full Text PDF

Background: Due to genetic depletion in nature, gene banks play a critical role in the long-term conservation of plant genetic resources and the provision of a wide range of plant genetic diversity for research and breeding programs. Genetic information on accessions facilitates gene bank management and can help to conserve limited resources and to identify taxonomic misclassifications or mislabelling. Here, we developed SNP markers for genotyping 4,187 mostly polyploid rose accessions from large rose collections, including the German Genebank for Roses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!