Multimodal mechanisms of pathogenic variants in the signal peptide of FIX leading to hemophilia B.

Blood Adv

Henan International Joint Laboratory of Thrombosis and Hemostasis, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, People's Republic of China.

Published: August 2024

AI Article Synopsis

  • Signal peptide (SP) is crucial for the secretion of factor IX (FIX), and variants in this region can lead to hemophilia B (HB), though the exact mechanism behind the genotype-phenotype correlation is not well understood.
  • In a study of 13 pathogenic point variants in the SP, researchers found that these mutations contribute to HB mainly through missense mutations affecting protein function and abnormal pre-mRNA splicing.
  • The study revealed that variants in specific areas of the SP disrupt its translocation and cleavage processes, leading to FIX deficiency, while vitamin K availability was shown to influence the severity of bleeding in patients with the same genetic variant.

Article Abstract

Signal peptide (SP) is essential for protein secretion, and pathogenic variants in the SP of factor IX (FIX) have been identified in hemophilia B (HB). However, the underlying mechanism for the genotype-phenotype correlation of these variants has not been well studied. Here, we systematically examined the effects of 13 pathogenic point variants in the SP of FIX using different approaches. Our results showed that these point variants lead to HB by missense variants and/or aberrant premessenger RNA (pre-mRNA) splicing. The missense variants in a hydrophobic core (h-region) mainly affected the cotranslational translocation function of the SP, and those in C-terminal containing cleavage site (c-region) caused FIX deficiency mainly by disturbing the cotranslational translocation and/or cleavage of the SP. Almost absolute aberrant pre-mRNA splicing was only observed in variants of c.82T>G, but a slight change of splicing patterns was found in variants of c.53G>T, c.77C>A, c.82T>C, and c.83G>A, indicating that these variants might have different degrees of impact on pre-mRNA splicing. Although two 6-nt deletion aberrant pre-mRNA splicing products caused FIX deficiency by disturbing the SP cleavage, they could produce some functional mature FIX, and vitamin K could increase the secretion of functional FIX. Taken together, our data indicated that pathogenic variants in the SP of FIX caused HB through diverse molecular mechanisms or even a mixture of several mechanisms, and vitamin K availability could be partially attributed to varying bleeding tendencies in patients carrying the same variant in the SP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321298PMC
http://dx.doi.org/10.1182/bloodadvances.2023012432DOI Listing

Publication Analysis

Top Keywords

pre-mrna splicing
16
pathogenic variants
12
variants
11
signal peptide
8
point variants
8
missense variants
8
cotranslational translocation
8
caused deficiency
8
deficiency disturbing
8
aberrant pre-mrna
8

Similar Publications

The splicing auxiliary factor OsU2AF35a enhances thermotolerance via protein separation and promoting proper splicing of OsHSA32 pre-mRNA in rice.

Plant Biotechnol J

January 2025

Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China.

Heat stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of heat resistance in rice. U2AF (U2 snRNP auxiliary factor) is an essential splicing complex with critical roles in recognizing the 3'-splice site of precursor messenger RNAs (pre-mRNAs). The U2AF small subunit (U2AF35) can bind to the 3'-AG intron border and promote U2 snRNP binding to the branch-point sequences of introns through interaction with the U2AF large subunit (U2AF65).

View Article and Find Full Text PDF

Splice age: mTORC1-mediated RNA splicing in metabolism and ageing.

Trends Cell Biol

January 2025

Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain. Electronic address:

The target of rapamycin complex mTORC1 has key roles in cell growth and metabolism and its inhibition delays ageing. Recent work by Ogawa et al. in Caenorhabditis elegans argues that modulation of pre-mRNA splicing factors and alternative splicing are key mediators of mTORC1 signalling and can enhance longevity.

View Article and Find Full Text PDF

Nuclear Tau accumulation in Alzheimer's disease.

Adv Protein Chem Struct Biol

January 2025

Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.

Tau is a well-known microtubule-associated protein and is located in the cytoplasm of neurons, which play a crucial role in Alzheimer's diseases. Due to its preferred binding to DNA sequences found in the nucleolus and pericentromeric heterochromatin, Tau has been found within the cell nucleus, where it may be a nucleic acid-associated protein. Tau has the ability to directly interact with nuclear pore complex nucleoporins, influencing both their structural and functional integrity.

View Article and Find Full Text PDF

Nuclear Condensates of WW Domain-Containing Adaptor With Coiled-Coil Regulate Mitophagy via Alternative Splicing.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Biomolecular condensates segregate nuclei into discrete regions, facilitating the execution of distinct biological functions. Here, it is identified that the WW domain containing adaptor with coiled-coil (WAC) is localized to nuclear speckles via its WW domain and plays a pivotal role in regulating alternative splicing through the formation of biomolecular condensates via its C-terminal coiled-coil (CC) domain. WAC acts as a scaffold protein and facilitates the integration of RNA-binding motif 12 (RBM12) into nuclear speckles, where RBM12 potentially interacts with the spliceosomal U5 small nuclear ribonucleoprotein (snRNP).

View Article and Find Full Text PDF

RNA pseudouridylation, a dynamic and reversible post-transcriptional modification found in diverse RNA species, is crucial for various biological processes, including tRNA homeostasis, tRNA transport, translation initiation regulation, pre-mRNA splicing, enhancement of mRNA translation, and translational fidelity. Disruption of pseudouridylation impairs cellular homeostasis, contributing to pathological alterations. Recent studies have highlighted its regulatory role in human diseases, particularly in tumourigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!