The diversification of macroscopic pelagic arthropods such as caryocaridid archaeostracans was a crucial aspect of the Great Ordovician Biodiversification Event, and the plankton revolution. A pelagic mode of life has been inferred for caryocaridids from their common presence in black graptolitic shales alongside carapace morphologies that appear streamlined. However, the hydrodynamic performance within the group and comparisons with other archaeostracans were lacking. Here we use a computational fluid dynamics approach to quantify the hydrodynamic performance of caryocaridids, and other early Palaeozoic archaeostracans including Arenosicaris inflata and Ordovician ceratiocaridids. We show that streamlining of the carapace was an important factor facilitating a pelagic mode of life in caryocaridids, in reducing the drag coefficient and facilitating a broader range of lift coefficients at different angles of attack. However, comparable hydrodynamic performance is also recovered for some ceratiocaridids. This suggests that alongside carapace streamlining, adaptations to appendages and thinning of the carapace were also important for a pelagic mode of life in Ordovician caryocaridids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142683 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304559 | PLOS |
Acta Neurochir (Wien)
January 2025
Department of Neurosurgery, College of Medicine, University of Michigan, Ann Arbor, MI, USA.
Background: Wall shear stress (WSS) plays a crucial role in the natural history of intracranial aneurysms (IA). However, spatial variations among WSS have rarely been utilized to correlate with IAs' natural history. This study aims to establish the feasibility of using spatial patterns of WSS data to predict IAs' rupture status (i.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia.
Background: Traumatic spinal cord injury (SCI) causes spinal cord swelling and occlusion of the subarachnoid space (SAS). SAS occlusion can change pulsatile cerebrospinal fluid (CSF) dynamics, which could have acute clinical management implications. This study aimed to characterise SAS occlusion and investigate CSF dynamics over 14 days post-SCI in the pig.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Wagner-Jauregg Weg 15, 4020 Linz and Altenbergerstrasse 69, Linz, 4040, Austria.
Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment.
View Article and Find Full Text PDFBiomed Microdevices
January 2025
Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan, 10540, Thailand.
Microfluidic chips often face challenges related to the formation and accumulation of air bubbles, which can hinder their performance. This study investigated a bubble trapping mechanism integrated into microfluidic chip to address this issue. Microfluidic chip design includes a high shear stress section of fluid flow that can generate up to 2.
View Article and Find Full Text PDFChemosphere
January 2025
Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), Washington Luís Road, Km 235, 13565-905, São Carlos, SP, Brazil.
Innovative applications of cobalt tungstate nanoparticles (CoWO NPs) are directly linked to their increased production and consumption, which can consequently increase their release into aquatic ecosystems and the exposure of organisms. Microalgae are autotrophic organisms that contribute directly to global primary productivity and provide oxygen for maintaining many organisms on Earth. In this paper, we assessed the toxicity of CoWO NPs when in contact with the freshwater microalga Raphidocelis subcapitata (Chlorophyceae).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!