Forest birds respond to a diverse set of environmental factors, including those altered by forest management intensity, such as resource and habitat availability in the form of food or nesting sites. Although resource/habitat availability and bird traits likely mediate responses of bird diversity to global change drivers, no study has assessed the direct and indirect effects of changes in forest management and traits on bird assemblages jointly at large spatial scales. In this context the questions remain whether (1) the birds' response to forest management changes through alterations in structural properties and/or food availability, or (2) if birds' eco-morphological traits act as environmental filters in response to environmental factors. We audio-visually recorded birds at 150 forest plots in three regions of Germany and assessed the forest structure (LiDAR) as well as the diversity of the herbaceous layer and diversity and biomass of arthropods. We further assessed eco-morphological traits of the birds and tested if effects on bird assemblages are mediated by changes in eco-morphological traits' composition. We found that abundance and species numbers of birds are explained best by models including the major environmental factors, forest structure, plants, and arthropods. Eco-morphological traits only increased model fit for indirect effects on abundance of birds. We found minor differences between the three regions in Germany, indicating spatial congruency of the processes at the local and regional scale. Our results suggest that most birds are not specialized on a particular food type, but that the size, diversity and species composition of arthropods are important. Our findings question the general view that bird traits adapt to the resources available.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142435 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304421 | PLOS |
Proceedings (IEEE Int Conf Bioinformatics Biomed)
December 2024
Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, USA.
Lung cancer remains a predominant cause of cancer-related deaths, with notable disparities in incidence and outcomes across racial and gender groups. This study addresses these disparities by developing a computational framework leveraging explainable artificial intelligence (XAI) to identify both patient- and cohort-specific biomarker genes in lung cancer. Specifically, we focus on two lung cancer subtypes, Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC), examining distinct racial and sex-specific cohorts: African American males (AAMs) and European American males (EAMs).
View Article and Find Full Text PDFRSC Adv
January 2025
National Centre of Excellence in Physical Chemistry, University of Peshawar Peshawar Pakistan.
In this study, a binary composite adsorbent based on activated carbon and phosphoric acid geopolymer foam (ACP) was prepared by combining phosphoric acid geopolymer (PAGP) with activated carbon (AC) and applied for the removal of methylene blue (MB). Activated carbon was thoroughly mixed with a mixture of fly ash and metakaolin in varying ratios, followed by phosphoric acid activation and thermal curing. The ACP adsorbent was characterized using scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, X-ray diffractometer (XRD), surface area analyser (SAP), and thermogravimetric analyser (TGA).
View Article and Find Full Text PDFFront Microbiol
January 2025
Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
species complex has been regarded as the most destructive disease agent of conifer trees in boreal forests. Tree microbiome can regulate the plant-pathogen interactions by influencing both host resistance and pathogen virulence. Such information would help to improve the future health of forests and explore strategies to enhance ecosystem stability.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Environment, Mazandaran Provincial Office, Mazandaran, Iran.
Ranger patrols are essential for biodiversity conservation, particularly in protected areas where they help mitigate poaching of large mammals. Effective patrols reduce poaching and support higher population densities of large mammals. This study investigates the impact of ranger patrols on large mammal sightings in the Central Alborz Protected Area (CAPA), northern Iran, a crucial wildlife corridor with UNESCO-listed Hyrcanian forests and high-altitude grasslands.
View Article and Find Full Text PDFForest canopy complexity (i.e., the three-dimensional structure of the canopy) is often associated with increased species diversity as well as high primary productivity across natural forests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!