Background: Ulnar shortening osteotomy (USO) has demonstrated good outcomes for patients with ulnar impaction syndrome. To minimize complications such as non-union, precise osteotomy and firm fixation are warranted. Despite various ulnar shortening systems have been developed, current technology does not meet all needs. A considerable portion of patients could not afford those designated USO systems. To tackle this challenge, our team reported successful results in standardized free-hand predrilled USO technique. However, it is still technical demanding and requires sufficient experience and confidence to excel. Therefore, our team designed an ulnar shortening system based on our free-hand technique principle, using metal additive manufacturing technology. The goal of this study is to describe the development process and report the performance of the system.
Methods: Utilizing metal additive manufacturing technology, our team developed an ulnar shortening system that requires minimal exposure, facilitates precise cutting, and allows for the easy placement of a 3.5 mm dynamic compression plate, available to patients at zero out-of-pocket cost. For performance testing, two surgeons with different levels of experience in ulnar shortening procedures were included: one fellow-trained hand and wrist surgeon and one senior resident. They performed ulnar shortening osteotomy (USO) using both the free-hand technique and the USO system-assisted technique on ulna sawbones, repeating each method three times. The recorded parameters included time-to-complete-osteotomy, total procedure time, chip diameter, shortening length, maximum residual gap, and deviation angle.
Results: For the hand and wrist fellow, with the USO system, the time-to-complete osteotomy was significantly reduced. (468.7 ± 63.6 to 260.0 ± 5 s, p < 0.05). Despite the preop goal was shortening 3 mm, the average shortening length was significantly larger in the free-hand group (5 ± 0.1; 3.2 ± 0.2 mm, p < 0.05). Both maximum residual gap and deviation angle reported no statistical difference between the two techniques for the hand surgeon. As for the senior resident, the maximum residual gap was significantly reduced, using the USO system (2.9 ± 0.8; 0.4 ± 0.4 mm, p = 0.02). Between two surgeons, significant larger maximum residual gap and deviation angle were noted on the senior resident doctor, in the free-hand technique group, but not in the USO system group.
Conclusion: The developed USO system may serve as a valuable tool, aiding in reliable and precise cutting as well as fixation for patients undergoing ulnar shortening osteotomy with a 3.5 mm dynamic compression plate, even for less experienced surgeons. The entire process, from concept generation and sketching to creating the CAD file and final production, serves as a translatable reference for other surgical scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141050 | PMC |
http://dx.doi.org/10.1186/s41205-024-00220-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!