The effectiveness of photodynamic therapy (PDT) in treating brain gliomas is limited by the solubility of photosensitizers and the production of reactive oxygen species (ROS), both of which are influenced by the concentration of photosensitizers and catalyst active sites. In this study, we developed a controllable surface hydroxyl concentration for the photosensitizer CN11 to address its poor water solubility issue and enhance PDT efficacy in tumor treatment. Compared to pure g-CN (CN), CN11 exhibited 4.6 times higher hydrogen peroxide production under visible light, increased incidence of the n → π* electron transition, and provided more available reaction sites for cytotoxic ROS generation. These findings resulted in a 2.43-fold increase in photodynamic treatment efficacy against brain glioma cells. Furthermore, in vivo experiments conducted on mice demonstrated that CN11 could be excreted through normal cell metabolism with low cytotoxicity and high biosafety, effectively achieving complete eradication of tumor cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c03894DOI Listing

Publication Analysis

Top Keywords

surface hydroxyl
8
effectiveness photodynamic
8
photodynamic treatment
8
brain glioma
8
enhancing surface
4
hydroxyl group
4
group modulation
4
modulation carbon
4
carbon nitride
4
nitride boosts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!