Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Damage of intestinal barrier function (BF) after ischemia/reperfusion (I/R) injury can induce serious complications and high mortality. MicroRNAs (miRNAs) are involved in intestinal mucosal BF and epithelial proliferation after I/R injury have been reported. We aimed to investigate the role and regulatory mechanism of miR-142-3p (miR-142) in intestinal epithelial proliferation and BF after I/R injury. We detected the proliferation, barrier function and miR-142 expression in clinical ischemic intestinal tissues. Furthermore, we induced an in vivo intestinal I/R injury mouse model and in vitro IEC-6 cells hypoxia/reoxygenation (H/R) injury model. After increasing and decreasing expression of miR-142, we detected the proliferation and barrier function of intestinal epithelial cells after I/R or H/R injury. We found that miR-142 expression was significantly increased in clinical ischemic intestinal mucosa and mouse intestinal mucosa exposed to I/R injury, and there was an inverse relationship between miR-142 and proliferation/BF. Inhibition of miR-142 significant promoted intestinal epithelial proliferation and BF after I/R injury. Furthermore, inhibition of miR-142 improved overall survival rate of mice after I/R injury. MiR-142 directly targeted FoxM1 which was identified by bioinformatics analysis and luciferase activity assay in IEC-6 cells. Inhibition of miR-142 promotes intestinal epithelial proliferation and BF after I/R injury in a FoxM1-mediated manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-024-05038-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!