Ciprofloxacin (CIP) is an antibiotic used to treat bacterial infections. It is not completely broken down during conventional wastewater treatment processes and can persist in the environment, leading to the development of antibiotic-resistant bacteria. This study focuses on the solar photocatalytic degradation CIP using biochar-supported photocatalysts. The photocatalysts developed by combining ZnO and WO in different ratios (1:2, 1:1, 2:1) were supported on hemp herd biochar. The photocatalyst made with a ratio of 2:1:1 of ZnO:WO:biochar (ZWH) reported the highest CIP degradation efficiency of 87.3% and TOC removal efficiency of 43.1% at a catalyst dosage of 2 g/L, initial CIP concentration of 3 mg/L, and treatment time of 150 min. Subsequently, the effects of operating parameters on CIP degradation were investigated using central composite design (CCD). About 85.4% degradation efficiency of CIP was obtained at optimum conditions (pH ∼8.4, initial CIP concentration ∼4.4 mg/L, catalytic dosage ∼3.4 g/L) within 90 min. A quadradic model was developed to interpret the linear and interactive effect of operating parameters on the CIP degradation efficiency with 2.24-4.59% error. The adsorption-desorption study showed around 42.21% of adsorbed CIP was desorbed from ZWH. Scavenger studies demonstrated that the CIP breakdown was notably done by the superoxide radical (O). The mechanism of CIP degradation was adsorption on biochar and subsequent degradation by photocatalyst. The prevalent degradation reactions such as C-N bond cleavage, decarboxylation, decarbonylation, defluorination, and ring opening lead to formation of various intermediates. The ZWH reusability test showed ~ 4.2% decrease in CIP removal efficiency after three cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-33764-2DOI Listing

Publication Analysis

Top Keywords

cip degradation
16
cip
12
degradation efficiency
12
degradation
9
solar photocatalytic
8
photocatalytic degradation
8
removal efficiency
8
initial cip
8
cip concentration
8
operating parameters
8

Similar Publications

Ciprofloxacin (CIP) is a widely used antibiotic, and its presence in water bodies poses a risk due to its resistance to conventional wastewater treatment processes. The accumulation of such pharmaceuticals can disrupt aquatic ecosystems, harm aquatic life, and contribute to ecological imbalances. Therefore, the degradation of CIP is of immense environmental significance.

View Article and Find Full Text PDF

Pharmaceutical residues, now recognized as a new category of environmental pollutants, have potentially risks to both ecosystems and human health effects. Recently, biosorption has emerged as one of the most promising strategies for managing these pharmaceutical wastes in water. Nevertheless, the environmental impact of the adsorbents presents a challenge to the advancement of this process.

View Article and Find Full Text PDF

Ecological risks of sulfonamides and quinolones degradation intermediates: Toxicity, microbial community, and antibiotic resistance genes.

Bioresour Technol

December 2024

Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan. Electronic address:

The ecological risks posed by incompletely degraded antibiotic intermediates in aquatic environments warrant significant attention. This study investigated the degradation mechanisms of sulfonamides (sulfadiazine, sulfamethoxazole) and quinolones (ciprofloxacin, norfloxacin) during thermally activated persulfate (TAP) treatment. The main degradation mechanisms for sulfonamides involved S-N bond cleavage and -NH oxidation mediated by sulfate and hydroxyl radicals, whereas quinolone degradation occurred primarily through piperazine ring cleavage facilitated by a single linear oxygen.

View Article and Find Full Text PDF

FeS-based nanomaterials are widely used in Fenton-like reaction of antibiotics degradation. However, the problems of poor stability and low reusability limit the catalytic efficiency. Herein, the study ingeniously introduced the g-CN into FeS to synthesize g-CN@biogenic FeS (CN-BF-1) nanocomposite with strong interaction of iron ions and "N-pots" by the mediation of sulfate reducing bacteria (SRB).

View Article and Find Full Text PDF

N, P co-doped graphite felt cathode for efficient removal of ciprofloxacin in an ascorbic acid-coupled electro-Fenton process: Simultaneously enhancing HO generation and Fe/Fe cycling.

Environ Res

December 2024

Department of Environmental Engineering, Beijing University of Technology, Beijing, 100124, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China. Electronic address:

To enhance the contaminant removal efficiency of the electro-Fenton (E-Fenton) process, a nitrogen and phosphorus co-doped graphite felt (NPGF) cathode was synthesized using an anodic oxidation technique. An ascorbic acid-coupled NPGF E-Fenton system was then established for the degradation of ciprofloxacin (CIP). The NPGF cathode featured abundant oxygen-containing functional groups (such as -COOH and -OH), which enhanced the selectivity of oxygen reduction and facilitated the formation of HO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!