A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of Polymers on Cocrystal Growth in a Drug-Drug Coamorphous System: Relations between Glass-to-Crystal Growth and Surface-Enhanced Crystal Growth. | LitMetric

Coamorphous and cocrystal drug delivery systems provide attractive crystal engineering strategies for improving the solubilities, dissolution rates, and oral bioavailabilities of poorly water-soluble drugs. Polymeric additives have often been used to inhibit the unwanted crystallization of amorphous drugs. However, the transformation of a coamorphous phase to a cocrystal phase in the presence of polymers has not been fully elucidated. Herein, we investigated the effects of low concentrations of the polymeric excipients poly(ethylene oxide) (PEO) and poly(vinylpyrrolidone) (PVP) on the growth of carbamazepine-celecoxib (CBZ-CEL) cocrystals from the corresponding coamorphous phase. PEO accelerated the growth rate of the cocrystals by increasing the molecular mobility of the coamorphous system, while PVP had the opposite effect. The coamorphous CBZ-CEL system exhibited two anomalously fast crystal growth modes: glass-to-crystal (GC) growth in the bulk and accelerated crystal growth at the free surface. These two fast growth modes both disappeared after doping with PEO (1-3% w/w) but were retained in the presence of PVP, indicating a potential correlation between the two fast crystal growth modes. We propose that the different effects of PEO and PVP on the crystal growth modes arose from weaker effects of the polymers on cocrystallization at the surface than in the bulk. This work provides a deep understanding of the mechanisms by which polymers influence the cocrystallization kinetics of a multicomponent amorphous phase and highlights the importance of polymer selection in stabilizing coamorphous systems or preparing cocrystals via solid-based methods.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.4c00315DOI Listing

Publication Analysis

Top Keywords

crystal growth
20
growth modes
16
growth
11
effects polymers
8
coamorphous system
8
glass-to-crystal growth
8
coamorphous phase
8
fast crystal
8
coamorphous
7
crystal
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!