Neurostimulation protocols are increasingly used as therapeutic interventions, including for brain injury. In addition to the direct activation of neurons, these stimulation protocols are also likely to have downstream effects on those neurons' synaptic outputs. It is well known that alterations in the strength of synaptic connections (long-term potentiation, LTP; long-term depression, LTD) are sensitive to the frequency of stimulation used for induction; however, little is known about the contribution of the temporal pattern of stimulation to the downstream synaptic plasticity that may be induced by neurostimulation in the injured brain. We explored interactions of the temporal pattern and frequency of neurostimulation in the normal cerebral cortex and after mild traumatic brain injury (mTBI), to inform therapies to strengthen or weaken neural circuits in injured brains, as well as to better understand the role of these factors in normal brain plasticity. Whole-cell (WC) patch-clamp recordings of evoked postsynaptic potentials in individual neurons, as well as field potential (FP) recordings, were made from layer 2/3 of visual cortex in response to stimulation of layer 4, in acute slices from control (naive), sham operated, and mTBI rats. We compared synaptic plasticity induced by different stimulation protocols, each consisting of a specific frequency (1 Hz, 10 Hz, or 100 Hz), continuity (continuous or discontinuous), and temporal pattern (perfectly regular, slightly irregular, or highly irregular). At the individual neuron level, dramatic differences in plasticity outcome occurred when the highly irregular stimulation protocol was used at 1 Hz or 10 Hz, producing an overall LTD in controls and shams, but a robust overall LTP after mTBI. Consistent with the individual neuron results, the plasticity outcomes for simultaneous FP recordings were similar, indicative of our results generalizing to a larger scale synaptic network than can be sampled by individual WC recordings alone. In addition to the differences in plasticity outcome between control (naive or sham) and injured brains, the dynamics of the changes in synaptic responses that developed during stimulation were predictive of the final plasticity outcome. Our results demonstrate that the temporal pattern of stimulation plays a role in the polarity and magnitude of synaptic plasticity induced in the cerebral cortex while highlighting differences between normal and injured brain responses. Moreover, these results may be useful for optimization of neurostimulation therapies to treat mTBI and other brain disorders, in addition to providing new insights into downstream plasticity signaling mechanisms in the normal brain.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2024.0129DOI Listing

Publication Analysis

Top Keywords

temporal pattern
20
synaptic plasticity
16
injured brain
12
pattern stimulation
12
plasticity induced
12
plasticity outcome
12
stimulation
9
plasticity
9
synaptic
8
brain
8

Similar Publications

The precise and fleeting moment of rich recollection triggered by an environmental cue is difficult to reproduce in the lab. However, epilepsy patients can experience sudden reminiscences after intracranial electrical brain stimulation (EBS). In these cases, the transient brain state related to the activation of the engram and its conscious perception can be recorded using intracerebral EEG (iEEG).

View Article and Find Full Text PDF

Background: Previous studies on neuroimaging findings in Alzheimer's disease (AD) patients with hallucinations and delusions have yielded inconsistent results. We aimed to systematically review neuroimaging findings of delusions and hallucinations in AD patients to describe the most prominent neuroimaging features.

Methods: We performed a comprehensive search in three online databases, including PubMed, Scopus, and Web of Science in June 2023.

View Article and Find Full Text PDF

Trajectories of Chinese adolescent depression before and after COVID-19: A cross-temporal meta-analysis with segmented regression.

J Affect Disord

December 2024

Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China. Electronic address:

Background: The COVID-19 pandemic has had a profound impact on adolescent mental health, particularly in China. However, there is a lack of research examining the trends in depressive symptom levels among Chinese adolescents before and after the pandemic. This study aims to investigate the changes in depressive symptom levels among Chinese adolescents pre- and post-pandemic and to identify the factors influencing these changes.

View Article and Find Full Text PDF

Up to the mountains and down to the wetlands: Thirty years' migration of cropland in China since 1990.

J Environ Manage

December 2024

Department of Urban and Rural Planning, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China. Electronic address:

Cropland changes are crucial aspects of land-use/land-cover changes (LUCC), which profoundly influence agricultural sustainability and terrestrial ecosystem health. In the context of dynamic shifts within the natural environment, coupled with the evolution of agricultural practices and the transformation of agrarian systems and policies, the trajectory of farmland alteration has exhibited significant divergence across various nations and regions. This article delves into the intriguing phenomenon of China's cropland migrating up to mountains and down to wetlands and analyses its spatiotemporal pattern evolution from 1990 to 2020.

View Article and Find Full Text PDF

Photochemically triggered, transient, and temporally oscillatory-modulated transcription machineries are introduced. The resulting dynamic transcription circuits are implemented to guide photochemically triggered, transient, and oscillatory modulation of thrombin toward temporal control over fibrinogenesis. One system describes the assembly of a reaction module leading to the photochemically triggered formation of an active transcription machinery that, in the presence of RNase H, guides the transient activation of thrombin toward fibrinogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!