A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of an innovative diffraction scattering theory of X-rays and electrons in imperfect crystals. | LitMetric

Development of an innovative diffraction scattering theory of X-rays and electrons in imperfect crystals.

Acta Crystallogr A Found Adv

A.V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre Crystallography and Photonics RAS, Leninskii prospekt, 59, Moscow, 119333, Russian Federation.

Published: July 2024

Fundamental equations describing the X-ray and electron diffraction scattering in imperfect crystals have been derived in the form of the matrix Fredholm-Volterra integral equation of the second kind. A theoretical approach has been developed using the perfect-crystal Green function formalism. In contrast, another approach utilizes the wavefield eigenfunctions related to the diagonalized matrix propagators of the conventional Takagi-Taupin and Howie-Whelan equations. Using the Liouville-Neumann-type series formalism for building up the matrix Fredholm-Volterra integral equation solutions, the general resolvent function solutions of the X-ray and electron diffraction boundary-valued Cauchy problems have been obtained. Based on the resolvent-type solutions, the aim is to reveal the features of the diffraction scattering onto the crystal lattice defects, including the mechanisms of intra- and interbranch wave scattering in the strongly deformed regions in the vicinity of crystal lattice defect cores. Using the two-stage resolvent solution of the second order, this approach has been supported by straightforward calculation of the electron bright- and dark-field contrasts of an edge dislocation in a thick foil. The results obtained for the bright- and dark-field profiles of the edge dislocation are discussed and compared with analogous ones numerically calculated by Howie & Whelan [Proc. R. Soc. A (1962), 267, 206].

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2053273324002730DOI Listing

Publication Analysis

Top Keywords

diffraction scattering
12
imperfect crystals
8
x-ray electron
8
electron diffraction
8
matrix fredholm-volterra
8
fredholm-volterra integral
8
integral equation
8
crystal lattice
8
bright- dark-field
8
edge dislocation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!