AI Article Synopsis

  • The review discusses the rising interest in 2D layered materials like graphene and h-BN, emphasizing advancements in strain engineering.
  • It highlights how applying strain can modify physical properties, improving the performance of devices across various applications.
  • The review also summarizes methods of strain engineering and explores its effects on multiple properties of these materials while addressing future applications and research challenges in fields like optoelectronics and spintronics.

Article Abstract

This review explores the growing interest in 2D layered materials, such as graphene, h-BN, transition metal dichalcogenides (TMDs), and black phosphorus (BP), with a specific focus on recent advances in strain engineering. Both experimental and theoretical results are delved into, highlighting the potential of strain to modulate physical properties, thereby enhancing device performance. Various strain engineering methods are summarized, and the impact of strain on the electrical, optical, magnetic, thermal, and valleytronic properties of 2D materials is thoroughly examined. Finally, the review concludes by addressing potential applications and challenges in utilizing strain engineering for functional devices, offering valuable insights for further research and applications in optoelectronics, thermionics, and spintronics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202402561DOI Listing

Publication Analysis

Top Keywords

strain engineering
16
strain
6
manipulating materials
4
materials strain
4
engineering
4
engineering review
4
review explores
4
explores growing
4
growing interest
4
interest layered
4

Similar Publications

Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage.

View Article and Find Full Text PDF

Leishmaniases affect millions of people around the world, caused by Leishmania parasites. Leishmania are transmitted by female sandflies from Phlebotominae subfamily during their blood meals. In mammals, promastigotes are phagocytosed mainly by macrophages, differentiate into amastigotes and multiply.

View Article and Find Full Text PDF

High-Density Polyethylene Janus Fibrous Membrane with Enhanced Breathability and Moisture Permeability via PDA Assisted Hydrophilic Modification.

Macromol Rapid Commun

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

Functional fibrous membranes with high mechanical properties are intensively developed for different application fields. In this study, to enhance moisture and air permeability without compromising mechanical strength, a facile float-surface modification strategy is employed to fabricate Janus fibrous membranes with distinct hydrophobicity/hydrophilicity using the high-density polyethylene (HDPE) fibrous membranes. By coating one side of the HDPE fibrous membranes with polydopamine (PDA) and a superhydrophilic polyelectrolyte, the obtained Janus HDPE fibrous membranes demonstrate an excellent water transmission rate (577.

View Article and Find Full Text PDF

Background And Purpose: Throwing a baseball involves intense exposure of the arm to high speeds and powerful forces, which contributes to an increasing prevalence of arm injuries among athletes. Traditional rigid exoskeletons and rehabilitation equipment frequently lack portability, safety, ergonomic design, and affordability. Traditional rehabilitation approaches frequently require therapist monitoring, resulting in therapy delays.

View Article and Find Full Text PDF

Liquid-Metal-Based Multichannel Strain Sensor for Sign Language Gesture Classification Using Machine Learning.

ACS Appl Mater Interfaces

January 2025

Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.

Liquid metals are highly conductive like metallic materials and have excellent deformability due to their liquid state, making them rather promising for flexible and stretchable wearable sensors. However, patterning liquid metals on soft substrates has been a challenge due to high surface tension. In this paper, a new method is proposed to overcome the difficulties in fabricating liquid-state strain sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!