Reactive oxygen species (ROS) play a crucial role in determining photocatalytic reaction pathways, intermediate species, and product selectivity. However, research on ROS regulation in polymer photocatalysts is still in its early stages. Herein, we successfully achieved series of modulations to the skeleton of Pyrene-alkyne-based (Tetraethynylpyrene (TEPY)) conjugated porous polymers (CPPs) by altering the linkers (1,4-dibromobenzene (BE), 4,4'-dibromobiphenyl (IP), and 3,3'-dibromobiphenyl (BP)). Experiments combined with theoretical calculations indicate that BE-TEPY exhibits a planar structure with minimal exciton binding energy, which favors exciton dissociation followed by charge transfer with adsorbed O to produce ⋅O . Thus BE-TEPY shows optimal photocatalytic activity for phenylboronic acid oxidation and [3+2] cycloaddition. Conversely, the skeleton of BP-TEPY is significantly distorted. Its planar conjugation decreases, intersystem crossing (ISC) efficiency increases, which makes it more prone for resonance energy transfer to generate O. Therefore, BP-TEPY displays best photocatalytic activity in [4+2] cycloaddition and thioanisole oxidation. Both above reactant conversion and its product selectivity exceed 99 %. This work systematically reveals the intrinsic structure-activity relationship among the skeleton structure of CPPs, excitonic behavior, and selective generation of ROS, providing new insights for the rational design of highly efficient and selective CPPs photocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202405396 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Fuzhou University, College of chemistry, No.2, Xue Yuan Road, University Town, 350116, Fuzhou, CHINA.
Kinetic factors frequently emerge as the primary constraints in photocatalysis, exerting a critical influence on the efficacy of polymeric photocatalysts. The diverse conjugation systems within covalent organic frameworks (COFs) can significantly impact photon absorption, energy level structures, charge separation and migration kinetics. Consequently, these limitations often manifest as unsatisfactory kinetic behavior, which adversely affects the photocatalytic activity of COFs.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
Organic anode materials have been recognized as promising candidates for low-cost and sustainable lithium-ion batteries (LIBs), which however suffer from the inferior cycling stability and low conductivity with unsatisfactory LIBs performance. Herein, two conjugated phthalocyanine-based covalent organic frameworks (COFs), namely CoPc-Ph-COF and CoPc-3Ph-COF, are synthesized by the nucleophilic substitution reaction of hexafluorophthalocyanine cobalt (II) (CoPcF) with 1,2,4,5-tetrahydroxybenzene and 9,10-dimethyl-2,3,6,7-tetrahydroxyanthracene, respectively. Powder X-ray diffraction and electron microscopy analysis reveal the crystalline porous structure of both COFs with a pore size of 1.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
A novel electrochemiluminescence (ECL) biosensor was developed for the ultrasensitive detection of miRNA-155, based on the synergistic combination of multifunctional nanomaterials. The biosensor employed a conductive metal-organic framework (MOF), Ni(HAB) (HAB = hexaaminobenzene), as the substrate material. The unique π-electron conjugated structure of Ni(HAB) endowed the biosensor with excellent electron transport properties, significantly enhancing its sensitivity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Textile Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China.
Polyimide-based triboelectric nanogenerators (TENGs) capable of energy harvesting in harsh environments (high temperature and high humidity) have been extensively studied. However, most polyimide-based TENGs have the disadvantages of poor air permeability and poor softness. In this study, a core-shell yarn with good air permeability, softness, and high electric output performance was successfully prepared by conjugate electrospinning.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China. Electronic address:
Porous polymers have emerged as promising candidates for photocatalytic hydrogen evolution, but their structural rigidity and crosslinking pose significant challenges, often leading to charge recombination and inadequate water/polymer interfaces. This study introduces novel block copolymers (BCPs) comprising a rigid pyrene core and various fluorinated benzene structures coupled with flexible diethyl ether-based hydrophilic units. By computationally predicting monomer structures and dipoles, the relationship between structure and function in these BCPs is examined, particularly focusing on local charge delocalization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!