Introduction: Cryptococcosis is the second most common invasive yeast infection in China. Pulmonary cryptococcosis (PC) is difficult to diagnose due to the lack of specific clinical features and the limitation of diagnostic techniques. Although lateral flow assay was very useful in diagnosing cryptococcal infection, quite a few patients with PC presented negative serum lateral flow assay (sLFA).

Methods: We conducted a retrospective study of HIV-negative patients who were diagnosed with PC in our hospital over the past decade to explore the potential relationship between the clinical profiles and sLFA in PC.

Results: In total, 112 patients with sLFA tested were enrolled in this study, of which 58.93% were male. The positivity rate of sLFA for PC was 91.07%. The extent of pulmonary lesions was positively correlated with sLFA grade (Spearman  = 0.268,  < 0.01). Solitary nodule (SN) and pneumonia were the most common imaging findings in PC with negative and positive sLFA respectively. Among 65 symptomatic PC patients, 14 presented with fever and had higher hypersensitive C-reactive protein (hsCRP) level and more extensive pulmonary involvement (Mann-Whitney U test,  < 0.05) than those without fever. Symptomatic PC patients were more likely to have positive results of sLFA (Mann-Whitney U test,  = 0.05) compared against asymptomatic ones.

Discussion: In conclusion, negative sLFA cannot exclude PC in patients with a solitary nodule in lung. Positive sLFA is more reliable in diagnosing PC in symptomatic patients with diffused lesions in lung who generally experience a more severe systemic inflammatory reaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138259PMC
http://dx.doi.org/10.3389/fmed.2024.1234474DOI Listing

Publication Analysis

Top Keywords

lateral flow
12
flow assay
12
pulmonary cryptococcosis
8
serum lateral
8
clinical radiological
4
radiological laboratory
4
laboratory features
4
features hiv-negative
4
hiv-negative pulmonary
4
cryptococcosis regard
4

Similar Publications

Mitochondrial function is modulated by its interaction with the endoplasmic reticulum (ER). Recent research indicates that these contacts are disrupted in familial models of amyotrophic lateral sclerosis (ALS). We report here that this impairment in the crosstalk between mitochondria and the ER impedes the use of glucose-derived pyruvate as mitochondrial fuel, causing a shift to fatty acids to sustain energy production.

View Article and Find Full Text PDF

Nanoparticle-mediated light-driven LAMP combined with test strips for sensitive and rapid visual detection of antibiotic resistance genes.

J Hazard Mater

December 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Antibiotic resistance genes (ARGs) are markers of drug-resistant pathogens, monitoring them contributes to prevent resistance to drugs. The detection methods for ARGs including PCR and isothermal amplification are sensitive and selective. However, it may take several hours or cannot be used on spot.

View Article and Find Full Text PDF

Lateral flow analysis test strips based on aggregation-induced emission technique: Principle, design, and application.

Biosens Bioelectron

December 2024

Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China; Juxintang (Chengdu) Biotechnology Co., Ltd., Chengdu, 641400, China. Electronic address:

This review examines the potential of aggregation-induced luminescence (AIE) materials in lateral flow assays (LFA) to enhance the sensitivity and specificity of a range of assay applications. LFA is a straightforward and effective paper-based platform for the rapid detection of target analytes in mixtures. Its simple design, low cost, and ease of operation are among the most attractive advantages of LFA.

View Article and Find Full Text PDF

Simultaneous Detection of Five Infectious Diseases in a Single Strip: Oligo dT-Utilized Lateral Flow Immunoassay.

Anal Chem

January 2025

SB BIOSCIENCE Inc., Room 120, Venture Building, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

Article Synopsis
  • The development of a multiplex lateral flow immunoassay (LFA) allows for the simultaneous detection of five respiratory viruses, including SARS-CoV-2 and Influenza, improving diagnostic accuracy amid viral mutations.
  • This platform utilizes oligonucleotide and antibody-conjugated gold nanoparticles (AuNPs) for high sensitivity and specificity in identifying these viruses.
  • Rigorous testing shows no false positives, making this LFA a reliable tool for rapid diagnosis, especially useful during pandemics.
View Article and Find Full Text PDF

Surveillance of antimicrobial resistance using isothermal amplification: a review.

Chem Commun (Camb)

January 2025

State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.

The monitoring of antibiotic resistance genes (ARGs) is crucial for understanding the level of antimicrobial resistance and the associated health burden, which in turn is essential for the control and prevention of antimicrobial resistance (AMR). Isothermal amplification, an emerging molecular biology technology, has been widely used for drug resistance detection. Furthermore, its compatibility with a range of technologies enables high-specificity, high-throughput, and portable and integrated detection in drug resistance, particularly in resource-limited areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!