A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acoustic levitation combined with laboratory-based small-angle X-ray scattering (SAXS) to probe changes in crystallinity and molecular organisation. | LitMetric

Single particle levitation techniques allow us to probe samples in a contactless way, negating the effect that surfaces could have on processes such as crystallisation and phase transitions. Small-angle X-ray scattering (SAXS) is a common method characterising the nanoscale order in aggregates such as colloidal, crystalline and liquid crystalline systems. Here, we present a laboratory-based small-angle X-ray scattering (SAXS) setup combined with acoustic levitation. The capability of this technique is highlighted and compared with synchrotron-based levitation-SAXS and X-ray diffraction. We were able to follow the deliquescence and crystallisation of sucrose, a commonly used compound for the study of viscous atmospheric aerosols. The observed increased rate of the deliquescence-crystallisation transitions on repeated cycling could suggest the formation of a glassy sucrose phase. We also followed a reversible phase transition in an oleic acid-based lyotropic liquid crystal system under controlled humidity changes. Our results demonstrate that the coupling of acoustic levitation with an offline SAXS instrument is feasible, and that the time resolution and data quality are sufficient to draw physically meaningful conclusions. There is a wide range of potential applications including topics such as atmospheric aerosol chemistry, materials science, crystallisation and aerosol spray drying.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138859PMC
http://dx.doi.org/10.1039/d4ra01418aDOI Listing

Publication Analysis

Top Keywords

acoustic levitation
12
small-angle x-ray
12
x-ray scattering
12
scattering saxs
12
laboratory-based small-angle
8
levitation combined
4
combined laboratory-based
4
x-ray
4
saxs
4
saxs probe
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!