A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design Principle of Molybdenum-Based Metal Nitrides for Lattice Nitrogen-Mediated Ammonia Production. | LitMetric

Chemical looping ammonia synthesis (CLAS) is a promising technology for reducing the high energy consumption of the conventional ammonia synthesis process. However, the comprehensive understanding of reaction mechanisms and rational design of novel nitrogen carriers has not been achieved due to the high complexity of catalyst structures and the unrevealed relationship between electronic structure and intrinsic activity. Herein, we propose a multistage strategy to establish the connection between catalyst intrinsic activity and microscopic electronic structure fingerprints using density functional theory computational energetics as bridges and apply it to the rational design of metal nitride catalysts for lattice nitrogen-mediated ammonia production. Molybdenum-based nitride catalysts with well-defined structures are employed as prototypes to elucidate the decoupled effects of electronic and geometrical features. The electron-transfer and spin polarization characteristics of the magnetic metals are constructed as descriptors to disclose the atomic-scale causes of intrinsic activity. Based on this design strategy, it is demonstrated that NiMoN catalysts possess the highest lattice nitrogen-mediated ammonia synthesis activity. This work reveals the structure-activity relationship of metal nitrides for CLAS and provides a multistage perspective on catalyst rational design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134358PMC
http://dx.doi.org/10.1021/jacsau.4c00194DOI Listing

Publication Analysis

Top Keywords

lattice nitrogen-mediated
12
nitrogen-mediated ammonia
12
ammonia synthesis
12
rational design
12
intrinsic activity
12
metal nitrides
8
ammonia production
8
electronic structure
8
nitride catalysts
8
design
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!