Chronic lymphocytic leukemia (CLL) is a low-grade B-cell lymphoproliferative disorder. It is the most prevalent type of leukemia in the western countries, with a median age at diagnosis of 70 years. In 2023, it is estimated that there will be 18,740 new cases of CLL, and an estimated 4,490 people will die of this disease. It represents 1.0% of all new cancer cases in the U.S. The rate of new cases was 4.6 per 100,000 men and women per year based on 2016-2020 cases, age-adjusted. Death rates from CLL are higher among older adults, or those 75 and older. The death rate was 1.1 per 100,000 men and women per year based on 2016-2020 deaths, age-adjusted. A common question that patients with CLL ask during their first clinic visit is: "How long will it be before I would need treatment?" Although this might seem like a simple question, the answer is not straight forward. CLL is a heterogenous disease, with a variable clinical course. Some patients may present with an aggressive disease requiring early initiation of treatment, while others have an indolent course and some, having so called smoldering CLL, may never need treatment. The variability in disease course can make predicting disease prognosis a complicated process. This brings forth the importance of establishing prognostic models that can predict disease course, time to treatment, and survival outcomes in such a heterogenous disease. The Rai and Binet staging systems were developed in the late 1970s to early 1980s. They separated patients into different stages based on clinical characteristics and laboratory findings. These simple staging systems are still in use; however, several prognostic markers need to be added for an individualized assessment and, with the recent development of genomic techniques leading to better understanding of CLL at the molecular level, newer prognostic markers have emerged.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11137234PMC
http://dx.doi.org/10.3389/fonc.2024.1371057DOI Listing

Publication Analysis

Top Keywords

prognostic markers
12
cll
8
patients cll
8
100000 men
8
men women
8
women year
8
year based
8
based 2016-2020
8
heterogenous disease
8
disease course
8

Similar Publications

The current study was deployed to evaluate the role of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miR-155, along with the inflammatory markers, TNFα and IL-6, and the adhesion molecule, cluster of differentiation 106 (CD106), in Behçet's disease (BD) pathogenesis. The study also assessed MALAT1/miR-155 as promising diagnostic and prognostic biomarkers for BD. The current retrospective case-control study included 74 Egyptian BD patients and 50 age and sex-matched controls.

View Article and Find Full Text PDF

Introduction: Liquid biopsy as a non-invasive method to investigate cancer biology and monitor residual disease has gained significance in clinical practice over the years. Whilst its applicability in carcinomas is well established, the low incidence and heterogeneity of bone and soft tissue sarcomas explains the less well-established knowledge considering liquid biopsy in these highly malignant mesenchymal neoplasms.

Materials And Methods: A systematic literature review adhering to the PRISMA guidelines initially identified 920 studies, of whom 68 original articles could be finally included, all dealing with clinical applicability of liquid biopsy in sarcoma.

View Article and Find Full Text PDF

Cardiac amyloidosis represents a unique disease process characterized by amyloid fibril deposition within the myocardial extracellular space. Advances in multimodality cardiac imaging enable accurate diagnosis and facilitate prompt initiation of disease-modifying therapies. Furthermore, rapid advances in multimodality imaging have enriched understanding of the underlying pathogenesis, enhanced prognostication, and resulted in the development of imaging-based markers that reflect the amyloid burden, which is of increasing importance when assessing the response to treatment.

View Article and Find Full Text PDF

Molecular Stratification of Light-Chain Cardiac Amyloidosis With F-Florbetapir and Ga-FAPI-04 for Enhanced Prognostic Precision.

JACC Cardiovasc Imaging

January 2025

Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Background: Cardiac involvement in amyloid light chain (AL) amyloidosis significantly influences prognosis, necessitating timely diagnosis and meticulous risk stratification.

Objectives: This prospective study aimed to delineate the molecular phenotypes of AL cardiac amyloidosis (AL-CA) by characterizing fibro-amyloid deposition using F-florbetapir and gallium-68-labeled fibroblast activation protein inhibitor-04 (Ga-FAPI-04) positron emission tomography (PET)/computed tomography (CT) imaging. The authors also proposed a novel molecular stratification methodology for prognosis.

View Article and Find Full Text PDF

Background: The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored.

Methods: Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!