Manganese antimonate (MnSbO) electrocatalysts for the oxygen-evolution reaction (OER) were synthesized via chemical vapor deposition. Mn-rich rutile MnSbO catalysts on fluorine-doped tin oxide (FTO) supports drove the OER for 168 h (7 days) at 10 mA cm with a time-averaged overpotential of 687 ± 9 mV and with >97% Faradaic efficiency. Time-dependent anolyte composition analysis revealed the steady dissolution of Mn and Sb. Extended durability analysis confirmed that Mn-rich MnSbO materials are more active but dissolve at a faster rate than previously reported Sb-rich MnSbO alloys.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134315PMC
http://dx.doi.org/10.1021/acsaem.4c00135DOI Listing

Publication Analysis

Top Keywords

oxygen-evolution reaction
8
manganese antimonate
8
synthesized chemical
8
chemical vapor
8
vapor deposition
8
catalysis oxygen-evolution
4
reaction sulfuric
4
sulfuric acid
4
acid manganese
4
antimonate films
4

Similar Publications

Efficient Catalysis for Zinc-Air Batteries by Multiwalled Carbon Nanotubes-Crosslinked Carbon Dodecahedra Embedded with Co-Fe Nanoparticles.

Small

January 2025

Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.

The design and fabrication of nanocatalysts with high accessibility and sintering resistance remain significant challenges in heterogeneous electrocatalysis. Herein, a novel catalyst is introduced that combines electronic pumping with alloy crystal facet engineering. At the nanoscale, the electronic pump leverages the chemical potential difference to drive electron migration from one region to another, separating and transferring electron-hole pairs.

View Article and Find Full Text PDF

Graphene Supported NiFe-LDH and PbO Catalysts Prepared by Plasma Process for Oxygen Evolution Reaction.

Materials (Basel)

December 2024

State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.

The development of efficient catalysts for water electrolysis is crucial for advancing the low-carbon transition and addressing the energy crisis. This work involves the fabrication of graphene-based catalysts for the oxygen evolution reaction (OER) by integrating NiFe-LDH and PbO onto graphene using plasma treatment. The plasma process takes only 30 min.

View Article and Find Full Text PDF

Significantly Enhanced Acidic Oxygen Evolution Reaction Performance of RuO Nanoparticles by Introducing Oxygen Vacancy with Polytetrafluoroethylene.

Polymers (Basel)

December 2024

Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

The supported RuO catalysts are known for their synergistic and interfacial effects, which significantly enhance both catalytic activity and stability. However, polymer-supported RuO catalysts have received limited attention due to challenges associated with poor conductivity. In this study, we successfully synthesized the RuO-polytetrafluoroethylene (PTFE) catalyst via a facile annealing process.

View Article and Find Full Text PDF

Water electrolysis is a promising path to the industrialization development of hydrogen energy. The exploitation of high-efficiency and inexpensive catalysts become important to the mass use of water decomposition. Ni-based nanomaterials have exhibited great potential for the catalysis of water splitting, which have attracted the attention of researchers around the world.

View Article and Find Full Text PDF

Constructing fast electron transfer pathways and abundant electro-active sites is an effective strategy to improve the oxygen evolution reaction (OER) performance of catalysts. Herein, structural engineering and dual-phase engineering were employed to construct a NiS nanoparticle-encapsulated MOF configured with a pseudo-neuronal structure (NiS/MOF/HT). It was found that the pseudo-neuronal structure, constructed with a carbon nanohorn (CNH) and carbon nanotube (CNT), provided fast electron transfer pathways and abundant exposed active sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!