Lignin degradation is a major process in the global carbon cycle across both terrestrial and marine ecosystems. , which are among the most abundant microorganisms in marine sediment, have been proposed to mediate anaerobic lignin degradation. However, the mechanism of bathyarchaeial lignin degradation remains unclear. Here, we report an enrichment culture of , named Baizosediminiarchaeum ligniniphilus DL1YTT001 (. B. ligniniphilus), from coastal sediments that can grow with lignin as the sole organic carbon source under mesophilic anoxic conditions. . B. ligniniphilus possesses and highly expresses novel methyltransferase 1 (MT1, ) for transferring methoxyl groups from lignin monomers to cob(I)alamin. MtgBs have no homology with known microbial methyltransferases and are present only in bathyarchaeial lineages. Heterologous expression of the gene confirmed -demethylation activity. The genes were identified in metagenomic data sets from a wide range of coastal sediments, and they were highly expressed in coastal sediments from the East China Sea. These findings suggest that , capable of -demethylation via their novel and specific methyltransferases, are ubiquitous in coastal sediments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989822 | PMC |
http://dx.doi.org/10.1002/mlf2.12082 | DOI Listing |
Environ Pollut
January 2025
Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:
The industrialization and urbanization along the Pearl River Delta (PRD) have exacerbated the issue of pollution in aquatic environments by organophosphate flame retardants (OPFRs). Historical cumulative pollution from legacy OPFRs, combined with newly emerging OPFRs, has increased the severity and complexity of OPFR pollution in this region. We explored the contamination profile, input flux and risk of legacy and emerging OPFRs in surface waters and in sediment samples of the PRD.
View Article and Find Full Text PDFSci Total Environ
January 2025
Universidade Federal do Pará, Programa de Pós-Graduação em Geologia e Geoquímica, Rua Augusto Corrêa, 1, Campus Guamá, PA 66075-110 Belém, Pará, Brazil.
The knowledge of metals concentration in upwelling areas are a concern due the higher productivity of these areas In Cabo Frio Upwelling-Downwelling System (CFUS) is high primary productivity area and has been identified as an Hg hotspot to biota in SE Brazil that has been susceptible to Hg inputs, due to growing industrialization in the region. To investigate the concentration of Hg and Se metals, as well as the trophic transfer of these metals, the present study investigated Hg and Se concentrations in 64 samples collected in net mesh of >20, >64, >150 and >300 μm, in 2012, in the region's water masses. Higher mean Hg concentrations were found in zooplankton, 0.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
This study reconstructs the environmental history of Xincun Lagoon over the past 167 years using sediment core XCW, employing Cu/Zn as a proxy for redox changes. Time-series analysis of Cu/Zn ratios reveals a significant decline (linear regression slope = -0.00082, p < 0.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China. Electronic address:
The temporal variation and transport of Cs in the Beibu Gulf (BG) are still poorly understood. Here we measured Cs concentrations in the BG water column and surface sediments during 2022. We found that Cs in the BG water column was controlled by the movement and mixing of local water masses.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Earth and Environmental System Sciences, Department of Oceanography, Pukyong National University, 45 Yongso-ro, Nam-gu, 48513, Busan, Republic of Korea.
This study explores carbon sequestration in South Korea's riverine wetlands, focusing on the four major rivers: Han, Yeongsan, Geum, and Nakdong. Field data from the Yeongsan River wetland, including 3D topography surveys, grainsize analyses, and loss-on-ignition measurements, were used to assess carbon stocks and their environmental drivers. The Yeongsan River was selected as a representative site due to its geomorphological, hydrological, and climatic similarities with the other three major rivers, which influence sediment transport and carbon dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!