[(CHN)H](SbF): a polyfluoroantimonite with a strong second harmonic generation effect.

Chem Sci

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 P. R. China

Published: May 2024

It is of great difficulty to create a new antimonite with second-harmonic-generation (SHG) intensity larger than 6 times that of KDP. In this study, a polyfluoroantimonite strategy has been proposed to explore fluoroantimonites with large nonlinear optical (NLO) coefficients. Under the cooperation of chemical (highly asymmetric π-conjugated organic amine) and physical (viscous reaction medium ethylene glycol) methods, two novel polyfluoroantimonites, namely, (3PC)(SbF) and (3AP)(SbF), have been achieved. Interestingly, these two structures contain two new polyfluoroantimonite groups respectively, an isolated (SbF) four-member polyhedral ring and an infinite [SbF] helical chain. More importantly, the polar (3AP)(SbF) displays a strong SHG intensity of 8.1 × KDP, a large birefringence of 0.258@546 nm and a high laser-induced damage threshold (LIDT) value of 149.7 MW cm. Theoretical calculations indicated that its strong SHG effect stems from the synergistic effect of the helical [SbF] polyfluoroantimonite chain and π-conjugated 3AP cation, with a contribution ratio of 48.93% and 50.77% respectively. This work provides a new approach for the design and synthesis of high-performance fluoroantimonites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134327PMC
http://dx.doi.org/10.1039/d4sc01716aDOI Listing

Publication Analysis

Top Keywords

shg intensity
8
strong shg
8
[chnh]sbf polyfluoroantimonite
4
polyfluoroantimonite strong
4
strong second
4
second harmonic
4
harmonic generation
4
generation great
4
great difficulty
4
difficulty create
4

Similar Publications

Acentric crystalline materials are the cornerstone of numerous cutting-edge technologies and have been highly sought-after, but they are difficult to construct controllably. Herein, by introducing a new p-block element to break the symmetrical environment of the d transition metal in the centric matrix TiTeO, a novel acentric tellurite sulfate, namely Ti(TeO)(SO), was successfully constructed. In its structure, two types of p-block element-centered oxo-anionic groups, [TeO] and [SO], endow [TiO] with an out-of-center distortion along the local C[111] direction, which is rare in titanium oxides containing a lone-pair cation.

View Article and Find Full Text PDF

Three two-dimensional (2D) chiral Ag(I) complexes with formulas [Ag(L)(5-nipa)] (), [Ag(L)(5-nipa)] (), and {[Ag(L)(5-hipa)]·2HO} () were prepared through the reactions of AgO with enantiopure -monodentate N-donors (L/L) and different dicarboxylic acids bearing A (acceptor)-π-- and D (donor)-π--type structural features, where / = (-)/(+)-2-(4'-pyridyl)-4,5-pinene-pyridine, 5-Hnipa = 5-nitroisophthalic acid, and 5-Hhipa = 5-hydroxyisophthalic acid. A study of their nonlinear optical responses reveals that chiral and enantiomeric pairs with the A-π--type dicarboxylic acid ligand simultaneously display second- and third-harmonic generation (SHG and THG) responses, while chiral containing the D-π--type dicarboxylic acid ligand only exhibits a very strong THG response. The THG intensity of is 451 × α-SiO, being about 27 and 24 times larger than those of and , respectively.

View Article and Find Full Text PDF

A HTO-Type Nonlinear Optical Fluorophosphate with Ultrawide Bandgap.

Small

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.

Compounds having hexagonal tungsten oxides (HTO) topology are of intense research interests owing to their potential functional properties, such as nonlinear optical (NLO) performances. However, most of the reported HTO-type compounds exhibit narrow optical bandgaps because of the d-d electronic transition of compositional d transition metals and lone pair electrons effect of Se/Te, which hinder their applications in the high-energy field, such as deep-ultraviolet (deep-UV) region. In this work, a new fluorophosphate, (NH)[ScF(PO)](POF) exhibiting HTO-topological structures is reported.

View Article and Find Full Text PDF

Mechanical Twisting-Induced Enhancement of Second-Order Optical Nonlinearity in a Flexible Molecular Crystal.

J Am Chem Soc

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.

Flexible molecular crystals are essential for advancing smart materials, providing unique functionality and adaptability for applications in next-generation electronics, pharmaceuticals, and energy storage. However, the optical applications of flexible molecular crystals have been largely restricted to linear optics, with nonlinear optical (NLO) properties rarely explored. Herein, we report on the application of mechanical twisting of flexible molecular crystals for second-order nonlinear optics.

View Article and Find Full Text PDF

Stacking Engineering toward Giant Second Harmonic Generation in Twisted Graphene Superstructures.

J Am Chem Soc

January 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

The nonlinear optical response in graphene is finding increasing applications in nanophotonic devices. The activation and enhancement of second harmonic generation (SHG) in graphene, which is generally forbidden in monolayer and AB-stacked bilayer graphene due to their centrosymmetry, is of urgent need for nanophotonic applications. Here, we present a comprehensive study of SHG performance of twisted multilayer graphene structures based on stacking engineering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!