Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Single-particle detection and sensing, powered by Förster resonance energy transfer (FRET), offers precise monitoring of molecular interactions and environmental stimuli at a nanometric resolution. Despite its potential, the widespread use of FRET has been curtailed by the rapid photobleaching of traditional fluorophores. This study presents a robust single-particle FRET platform utilizing upconversion nanoparticles (UCNPs), which stand out for their remarkable photostability, making them superior to conventional organic donors for energy transfer-based assays. Our comprehensive research demonstrates the influence of UCNPs' size, architecture, and dye selection on the efficiency of FRET. We discovered that small particles (∼14 nm) with a Yb-enriched outermost shell exhibit a significant boost in FRET efficiency, a benefit not observed in larger particles (∼25 nm). 25 nm UCNPs with an inert NaLuF shell demonstrated a comparable level of emission enhancement FRET as those with a Yb-enriched outermost shell. At the single-particle level, these FRET-enhanced UCNPs manifested an upconversion green emission intensity that was 8.3 times greater than that of their unmodified counterparts, while maintaining notable luminescence stability. Our upconversion FRET system opens up new possibilities for developing more effective high-brightness, high-sensitivity single-particle detection, and sensing modalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134271 | PMC |
http://dx.doi.org/10.1039/d4na00198b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!