YAP maintains cartilage stem/progenitor cell homeostasis in osteoarthritis.

J Orthop Translat

Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.

Published: May 2024

Background: The cartilage stem/progenitor cells (CSPC) play a critical role in maintaining cartilage homeostasis. However, the effects of phenotypic fluctuations of CSPC on cartilage degeneration and the role of CSPC in the pathogenesis of OA is largely unknown.

Methods: The cartilage samples of 3 non-OA and 10 OA patients were collected. Human CSPC (hCSPC) derived from these patients were isolated, identified, and evaluated for cellular functions. Additionally, chondrocytes derived from OA patients were isolated. The effect of Yes-associated protein (YAP) expression on hCSPC was investigated . The OA rat model was established by Hulth's method. Lentivirus-mediated YAP (Lv-YAP) or lentivirus-mediated YAP RNAi (Lv-YAP-RNAi) was injected intra-articularly to modulate YAP expression in rat joints. In addition, allogeneic rat CSPC (rCSPC) overexpressing or silencing YAP were transplanted by intra-articularly injection. We also evaluated the functions of rCSPC and the OA-related cartilage phenotype in the rat model. Finally, the transcriptome of OA rCSPC overexpressing YAP was examined to explore the potential downstream targets of YAP in rCSPC.

Results: hCSPC derived from OA patients exhibited differential chondrogenesis capacity. Among them, a subset of hCSPC showed pronounced dysfunction, including impaired chondrogenic differentiation, inhibition of proliferation and migration, and downregulation of lubricin. Additionally, YAP was lowly expressed in quiescent non-OA hCSPC, upregulated in activated OA hCSPC, but significantly downregulated in dysfunctional OA hCSPC. Notably, the overexpression of YAP in OA hCSPC improved the proliferation, lubricin production, cell migration, and senescence, while silencing YAP had the opposite effect. In vivo, upregulation of YAP in the joint delayed OA progression and improved the cartilage regeneration capacity of rCSPC. Using transcriptomic analysis, we found that YAP may regulate rCSPC function by upregulating Baculoviral IAP repeat-containing 2 (BIRC2). Importantly, the knockdown of BIRC2 partly blocked the regulation of YAP on the CSPC function.

Conclusion: Dysfunction of CSPC compromises the intrinsic repair capacity of cartilage and impairs cartilage homeostasis in OA. Notably, the transcriptional co-activator YAP plays a critical role in maintaining CSPC function through potential target gene BIRC2.

The Translational Potential Of This Article: In this study, we observed targeting the YAP-BIRC2 axis improved the CSPC function and restored the cartilage homeostasis in OA. This study provides a potential stem cell-modifying OA therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11137389PMC
http://dx.doi.org/10.1016/j.jot.2024.03.004DOI Listing

Publication Analysis

Top Keywords

yap
15
cartilage homeostasis
12
derived patients
12
cartilage
10
cspc
9
cartilage stem/progenitor
8
critical role
8
role maintaining
8
hcspc
8
hcspc derived
8

Similar Publications

Comparison of Respiratory Microbiomes in Influenza Versus Other Respiratory Infections: Systematic Review and Analysis.

Int J Mol Sci

January 2025

Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.

Studies have indicated the potential importance of the human nasal and respiratory microbiomes in health and disease. However, the roles of these microbiomes in the pathogenesis of influenza and its complications are not fully understood. Therefore, the objective of this systematic review and analysis is to identify the patterns of nasal and respiratory microbiome dysbiosis and to define the unique signature bacteria associated with influenza compared with other respiratory tract infections.

View Article and Find Full Text PDF

The oncogenes yes-associated protein () and transcriptional coactivator with PDZ-binding motif () are potent liver oncogenes. Because gene mutations cannot fully explain their nuclear enrichment, we aim to understand which mechanisms cause activation in liver cancer cells. The combination of proteomics and functional screening identified numerous apical cell polarity complex proteins interacting with YAP and TAZ.

View Article and Find Full Text PDF

Exploring the Revolutionary Impact of YAP Pathways on Physical and Rehabilitation Medicine.

Biomolecules

January 2025

Department of Neuroscience, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy.

Cellular behavior is strongly influenced by mechanical signals in the surrounding microenvironment, along with external factors such as temperature fluctuations, changes in blood flow, and muscle activity, etc. These factors are key in shaping cellular states and can contribute to the development of various diseases. In the realm of rehabilitation physical therapies, therapeutic exercise and manual treatments, etc.

View Article and Find Full Text PDF

Exploring the Perspectives of Canadian Clinicians Regarding Digitally Delivered Psychotherapies Utilized for Trauma-Affected Populations.

Int J Environ Res Public Health

January 2025

Heroes in Mind, Advocacy, and Research Consortium, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB T6G 2G4, Canada.

Many clinical sites shifted towards digital delivery of mental health services during the COVID-19 pandemic. There is still much to learn regarding tailoring digitally delivered interventions for trauma-affected populations. The current study examined the perceptions of Canadian mental health clinicians who provided digitally delivered psychotherapies utilized for trauma-affected populations.

View Article and Find Full Text PDF

Background: Discs large homolog 2 (DLG2) has been implicated in cancer development, yet its role in cervical cancer remains unclear. This study aims to explore the regulatory mechanism of DLG2 in cervical cancer and its clinical implications.

Methods: Quantitative reverse transcription polymerase chain reaction and western blotting assays were employed to detect RNA and protein expression, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!