A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Extensive remodeling of sugar metabolism through gene loss and horizontal gene transfer in a eukaryotic lineage. | LitMetric

AI Article Synopsis

  • Yeasts in the Saccharomycotina subphylum typically conserve genes for key metabolic processes like alcoholic fermentation, but fructophilic species in the Wickerhamiella and Starmerella genera show unique adaptations due to gene loss and horizontal gene transfer.
  • Researchers analyzed 63 genomes from this clade, identifying nine HGT events and secondary gene losses that affect sugar metabolism and fermentation processes.
  • Unexpected findings included instances of fructophily and alcoholic fermentation occurring without expected key genes, implying significant innovation in sugar metabolism linked to the evolutionary history of the W/S clade.

Article Abstract

Background: In yeasts belonging to the subphylum Saccharomycotina, genes encoding components of the main metabolic pathways, like alcoholic fermentation, are usually conserved. However, in fructophilic species belonging to the floral Wickerhamiella and Starmerella genera (W/S clade), alcoholic fermentation was uniquely shaped by events of gene loss and horizontal gene transfer (HGT).

Results: Because HGT and gene losses were first identified when only eight W/S-clade genomes were available, we collected publicly available genome data and sequenced the genomes of 36 additional species. A total of 63 genomes, representing most of the species described in the clade, were included in the analyses. Firstly, we inferred the phylogenomic tree of the clade and inspected the genomes for the presence of HGT-derived genes involved in fructophily and alcoholic fermentation. We predicted nine independent HGT events and several instances of secondary loss pertaining to both pathways. To investigate the possible links between gene loss and acquisition events and evolution of sugar metabolism, we conducted phenotypic characterization of 42 W/S-clade species including estimates of sugar consumption rates and fermentation byproduct formation. In some instances, the reconciliation of genotypes and phenotypes yielded unexpected results, such as the discovery of fructophily in the absence of the cornerstone gene (FFZ1) and robust alcoholic fermentation in the absence of the respective canonical pathway.

Conclusions: These observations suggest that reinstatement of alcoholic fermentation in the W/S clade triggered a surge of innovation that goes beyond the utilization of xenologous enzymes, with fructose metabolism playing a key role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140947PMC
http://dx.doi.org/10.1186/s12915-024-01929-7DOI Listing

Publication Analysis

Top Keywords

alcoholic fermentation
20
gene loss
12
sugar metabolism
8
loss horizontal
8
horizontal gene
8
gene transfer
8
w/s clade
8
gene
7
fermentation
6
alcoholic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!