Vacuum-Boosting Precise Synthetic Control of Highly Bright Solid-State Carbon Quantum Dots Enables Efficient Light Emitting Diodes.

Small

College of Physics, University Industry Joint Center for Ocean Observation and Broadband Communication, College of Textiles and Clothes, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, P. R. China.

Published: October 2024

Carbon quantum dots (C-dots) have emerged as efficient fluorescent materials for solid-state lighting devices. However, it is still a challenge to obtain highly bright solid-state C-dots because of the aggregation caused quenching. Compared to the encapsulation of as-prepared C-dots in matrices, one-step preparation of C-dots/matrix complex is a good method to obtain highly bright solid-state C-dots, which is still quite limited. Here, an efficient and controllable vacuum-boosting gradient heating approach is demonstrated for in situ synthesis of a stable and efficient C-dots/matrix complex. The addition of boric acid strongly bonded with urea, promoting the selectivity of the reaction between citric acid and urea. Benefiting from the high reaction selectivity and spatial-confinement growth of C-dots in porous matrices, in situ synthesize C-dots bonded can synthesized dominantly with a crosslinked octa-cyclic compound, biuret and cyanuric acid (triuret). The obtained C-dots/matrix complex exhibited bright green emission with a quantum yield as high as 90% and excellent thermal and photo stability. As a proof-of-concept, the as-prepared C-dots are used for the fabrication of white light-emitting diodes (LEDs) with a color rendering index of 84 and luminous efficiency of 88.14 lm W, showing great potential for applications in LEDs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202401812DOI Listing

Publication Analysis

Top Keywords

highly bright
12
bright solid-state
12
c-dots/matrix complex
12
carbon quantum
8
quantum dots
8
solid-state c-dots
8
as-prepared c-dots
8
c-dots
7
vacuum-boosting precise
4
precise synthetic
4

Similar Publications

Landau-Levich Scaling for Optimization of Quantum Dot Layer Morphology and Thickness in Quantum-Dot Light-Emitting Diodes.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States.

Quantum dot (QD) light-emitting diodes (QLEDs) are promising candidates for next-generation displays because of their high efficiency, brightness, broad color gamut, and solution-processability. Large-scale solution-processing of electroluminescent QLEDs poses significant challenges, particularly concerning the precise control of the active layer's thickness and uniformity. These obstacles directly impact charge transport, leading to current leakage and reduced overall efficiency.

View Article and Find Full Text PDF

Event cameras only report changes in brightness when thresholds in individual pixels relative to previous levels are crossed. They output sparse streams of events that quantify these changes spatially and temporally. We have developed a measurement system using two event cameras in a stereo configuration with a specialized projector for 3D measurements of static objects.

View Article and Find Full Text PDF

Functional nanocrystal as effective contrast agents for dual-mode imaging: Live-cell sonoluminescence and contrast-enhanced echography.

Ultrason Sonochem

January 2025

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; Polito(BIO)Med Lab, Politecnico di Torino, 10129 Turin, Italy. Electronic address:

In the context of molecular imaging, the present work explores an innovative platform made of lipid-coated nanocrystals as contrast-enhanced agent for both ultrasound imaging and sonoluminescence. At first, the dynamics of gas bubbles generation and cavitation under insonation with either pristine or lipid-coated nanocrystals (ZnO-Lip) are described, and the differences between the two colloidal systems are highlighted. These ZnO-Lip show an unprecedented ability to assist cavitation, which is reflected in enhanced sonoluminescent light emission with respect to the pristine nanocrystals or the pure water.

View Article and Find Full Text PDF

The CN stretch frequency of neutral, gas-phase 9-cyanoanthracene is 2207 cm (4.531 μm) based on high-resolution infrared absorption experiments coupled with a new hybrid anharmonic quantum chemical methodology. A broad band (full-width at half-maximum of 47 cm) is observed and assigned to multiple transitions, including the CN stretch fundamental and various combination bands that gather intensity from strong anharmonic coupling with the bright CN stretch.

View Article and Find Full Text PDF

The development of high-brightness electron sources is critical to state-of-the-art electron accelerator applications like X-ray free electron laser (XFEL) and ultra-fast electron microscopy. Cesium telluride is chosen as the electron source material for multiple cutting-edge XFEL facilities worldwide. This manuscript presents the first demonstration of the growth of highly crystalized and epitaxial cesium telluride thin films on 4H-SiC and graphene/4H-SiC substrates with ultrasmooth film surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!