Strain engineering has been widely used to optimize platinum-based oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs). PtM (M is base metals), a well-known high-compressive-strain intermetallic alloy, shows promise as a low platinum ORR catalyst due to high intrinsic activity. However, during the alloying of Pt with a threefold amount of M, a notable phase separation between Pt and M may occur, with M particles rapidly sintering while Pt particles grow slowly, posing a challenge in achieving a well-defined PtM intermetallic alloy. Here, an entropy-driven Ostwald ripening reversal phenomenon is discovered that enables the synthesis of small-sized Pt(FeCoNiCu) intermetallic ORR catalysts. High entropy promotes the thermodynamic driving force for the alloying Pt with M, which triggers the Ostwald ripening reversal of sintered FeCoNiCu particles and facilitates the formation of uniform Pt(FeCoNiCu) intermetallic catalysts. The prepared Pt(FeCoNiCu) catalysts exhibit a high specific activity of 3.82 mA cm, along with a power density of ≈1.3 W cm at 0.67 V and 94 °C with a cathode Pt loading of 0.1 mg cm in H-air fuel cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202401134 | DOI Listing |
Phys Chem Chem Phys
January 2025
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Fürther Strasse 248, 90429 Nürnberg, Germany.
Interest in organic solar cells (OSCs) is constantly rising in the field of photovoltaic devices. The device performance relies on the bulk heterojunction (BHJ) nanomorphology, which develops during the drying process and additional post-treatment. This work investigates the effect of thermal annealing (TA) on the all-small molecule DRCN5T:PCBM blend with phase field simulations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Normal University, Chemistry, No. 100, Guilin Road, 200234, Shanghai, CHINA.
The use of precious metals (PMs) in many areas, such as printed circuit boards, catalysts, and target drugs, is increasing due to their unique physical and chemical properties, but their recovery remains a great challenge in terms of zero-valent PMs as final product. We report a highly hydrophilic carbon dot (CD) as reductant (electron donor), the defects in CD served as efficient active sites for zero-valent PMs recovery with an electron-donating capacity is ~1.7 mmol g-1.
View Article and Find Full Text PDFSci Rep
December 2024
Science Group, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
The earliest named stromatolite Cryptozoon Hall, 1884 (Late Cambrian, ca. 490 Ma, eastern New York State), was recently re-interpreted as an interlayered microbial mat and non-spiculate (keratosan) sponge deposit. This "classic stromatolite" is prominent in a fundamental debate concerning the significance or even existence of non-spiculate sponges in carbonate rocks from the Neoproterozoic (Tonian) onwards.
View Article and Find Full Text PDFNanotechnol Sci Appl
December 2024
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
Purpose: This study investigates the impact of various mixing parameters and surfactant combinations on the physical characteristics of nanoemulsions produced using high-speed homogenization. Nanoemulsions are explored for their capacity to enhance transdermal drug delivery in pharmaceutical and cosmetic contexts.
Methods: Employing a standard high-speed homogenizer typical in the cosmetic industry, we tested different combinations of Polysorbate (Tween®) and Sorbitan ester (Span®) surfactants under single and intermittent process configurations.
Int J Biol Macromol
December 2024
Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, 43150 Ben Guerir, Morocco. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!