Background: KCNE1 encodes a 129-residue cardiac potassium channel (I) subunit. KCNE1 variants are associated with long QT syndrome and atrial fibrillation. However, most variants have insufficient evidence of clinical consequences and thus limited clinical utility.

Methods: In this study, we leveraged the power of variant effect mapping, which couples saturation mutagenesis with high-throughput sequencing, to ascertain the function of thousands of protein-coding KCNE1 variants.

Results: We comprehensively assayed KCNE1 variant cell surface expression (2554/2709 possible single-amino-acid variants) and function (2534 variants). Our study identified 470 loss- or partial loss-of-surface expression and 574 loss- or partial loss-of-function variants. Of the 574 loss- or partial loss-of-function variants, 152 (26.5%) had reduced cell surface expression, indicating that most functionally deleterious variants affect channel gating. Nonsense variants at residues 56-104 generally had WT-like trafficking scores but decreased functional scores, indicating that the latter half of the protein is dispensable for protein trafficking but essential for channel function. 22 of the 30 KCNE1 residues (73%) highly intolerant of variation (with > 70% loss-of-function variants) were in predicted close contact with binding partners KCNQ1 or calmodulin. Our functional assay data were consistent with gold standard electrophysiological data (ρ =  - 0.64), population and patient cohorts (32/38 presumed benign or pathogenic variants with consistent scores), and computational predictors (ρ =  - 0.62). Our data provide moderate-strength evidence for the American College of Medical Genetics/Association of Molecular Pathology functional criteria for benign and pathogenic variants.

Conclusions: Comprehensive variant effect maps of KCNE1 can both provide insight into I channel biology and help reclassify variants of uncertain significance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138074PMC
http://dx.doi.org/10.1186/s13073-024-01340-5DOI Listing

Publication Analysis

Top Keywords

variants
12
loss- partial
12
loss-of-function variants
12
cell surface
8
surface expression
8
574 loss-
8
partial loss-of-function
8
benign pathogenic
8
kcne1
7
high-throughput functional
4

Similar Publications

Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.

View Article and Find Full Text PDF

Family Genetic Risk Communication and Reverse Cascade Testing in the BabySeq Project.

Genet Med

December 2024

Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA.

Purpose: Genomic sequencing of newborns (NBSeq) can initiate disease surveillance and therapy for children, and may identify at-risk relatives through reverse cascade testing. We explored genetic risk communication and reverse cascade testing among families of newborns who underwent exome sequencing and had a risk for autosomal dominant disease identified.

Methods: We conducted semi-structured interviews with parents of newborns enrolled in the BabySeq Project who had a pathogenic or likely-pathogenic (P/LP) variant associated with an autosomal dominant (AD) childhood- and/or adult-onset disease returned.

View Article and Find Full Text PDF

Quantitative natural history modeling of HPDL-related disease based on cross-sectional data reveals genotype-phenotype correlations.

Genet Med

December 2024

Movement Disorders Program, Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA. Electronic address:

Objectives: Biallelic HPDL variants have been identified as the cause of a progressive childhood-onset movement disorder, with a broad clinical spectrum from severe neurodevelopmental disorder to juvenile-onset pure hereditary spastic paraplegia type 83. This study aims at delineating the geno- and phenotypic spectra of patients with HPDL-related disease, quantitatively modelling the natural history, and uncovering genotype-phenotype associations.

Methods: A cross-sectional analysis of 90 published and one novel case was performed, employing a Human Phenotype Ontology-based approach.

View Article and Find Full Text PDF

Real-world experience of diagnosis, disability, and daily management in parents of children with different genetic developmental and epileptic encephalopathies: a qualitative study.

Ann Med

December 2025

Research Group of Humanities and Qualitative Research in Health Science of Universidad Rey Juan Carlos (Hum&QRinHS), Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos, Alcorcón, Spain.

Purpose: This study describes the experience of parents of children with developmental and epileptic encephalopathies (DEE) and how the disease impacts their daily lives.

Materials And Methods: A descriptive qualitative study was conducted using purposeful sampling. Twenty-one parents of children with DEEs caused by SCN1A, KCNQ2, CDKL5, PCDH19, and GNAO1 variants were included.

View Article and Find Full Text PDF

Background: Substance use disorders are multifaceted conditions influenced by both genetic and environmental factors. Serotonergic pathways are known to be involved in substance use disorder susceptibility, with genetic markers within serotonin receptor genes identified as potential risk factors.

Methods: To further explore this relationship, we conducted a study to investigate the association between several polymorphisms in five serotonin receptor genes (, , ) and substance use disorders (SUD) in Jordanian males by sequencing genotypes in 496 SUD patients and 496 healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!