Investigating mobile element variations by statistical genetics.

Hum Genome Var

Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.

Published: May 2024

The integration of structural variations (SVs) in statistical genetics provides an opportunity to understand the genetic factors influencing complex human traits and disease. Recent advances in long-read technology and variant calling methods for short reads have improved the accurate discovery and genotyping of SVs, enabling their use in expression quantitative trait loci (eQTL) analysis and genome-wide association studies (GWAS). Mobile elements are DNA sequences that insert themselves into various genome locations. Insertional polymorphisms of mobile elements between humans, called mobile element variations (MEVs), contribute to approximately 25% of human SVs. We recently developed a variant caller that can accurately identify and genotype MEVs from biobank-scale short-read whole-genome sequencing (WGS) datasets and integrate them into statistical genetics. The use of MEVs in eQTL analysis and GWAS has a minimal impact on the discovery of genome loci associated with gene expression and disease; most disease-associated haplotypes can be identified by single nucleotide variations (SNVs). On the other hand, it helps make hypotheses about causal variants or effector variants. Focusing on MEVs, we identified multiple MEVs that contribute to differential gene expression and one of them is a potential cause of skin disease, emphasizing the importance of the integration of MEVs in medical genetics. Here, I will provide an overview of MEVs, MEV calling from WGS, and the integration of MEVs in statistical genetics. Finally, I will discuss the unanswered questions about MEVs, such as rare variants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140006PMC
http://dx.doi.org/10.1038/s41439-024-00280-1DOI Listing

Publication Analysis

Top Keywords

statistical genetics
16
mevs
9
mobile element
8
element variations
8
eqtl analysis
8
mobile elements
8
mevs contribute
8
gene expression
8
integration mevs
8
genetics
5

Similar Publications

Context: Guidelines for use of injectable estradiol esters (valerate [EV] and cypionate [EC]) among transgender and gender diverse (TGD) individuals designated male at birth vary considerably, with many providers noting supraphysiologic serum estradiol concentrations based on current dosing recommendations.

Objectives: 1. Determine dose of injectable estradiol (subcutaneous [SC] and intramuscular [IM]) needed to reach guideline-recommended estradiol concentrations for TGD adults using EC/EV.

View Article and Find Full Text PDF

Shotgun and proximity-ligation metagenomic sequencing were used to generate thousands of metagenome assembled genomes (MAGs) from the untreated wastewater, activated sludge bioreactors, and anaerobic digesters from two full-scale municipal wastewater treatment facilities. Analysis of the antibiotic resistance genes (ARGs) in the pool of contigs from the shotgun metagenomic sequences revealed significantly different relative abundances and types of ARGs in the untreated wastewaster compared to the activated sludge bioreactors or the anaerobic digesters (p < 0.05).

View Article and Find Full Text PDF

Background: The 5-year prognosis of non-high-risk neuroblastomas is generally good (>90%). However, a proportion of patients show progression and succumb to their disease. We aimed to identify molecular aberrations (not incorporated in the current risk stratification) associated with overall survival (OS) and/or event-free survival (EFS) in patients diagnosed with non-high-risk neuroblastoma.

View Article and Find Full Text PDF

Background/objectives: Gastric cancer (GC) incidence remains high worldwide, and the survival rate is poor. GC develops from atrophic gastritis (AG), associated with () infection, passing through intestinal metaplasia and dysplasia steps. Since eradication does not exclude GC development, further investigations are needed.

View Article and Find Full Text PDF

Background/objectives: This study builds on previous findings from mouse models, which showed that maternal overnutrition induced by a high-fat diet (HFD) promotes metabolic-associated fatty liver disease (MAFLD) in offspring, linked to global DNA hypermethylation. We explored whether epigenetic modulation with 5-Aza-CdR, a DNA methylation inhibitor, could prevent MAFLD in offspring exposed to maternal overnutrition.

Methods: The offspring mice from dams of maternal overnutrition were fed either a chow diet or a high-fat diet (HFD) for 10 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!