The design of small peptides that assemble into catalytically active intermolecular structures has proven to be a successful strategy towards developing minimalistic catalysts that exhibit some of the unique functional features of enzymes. Among these, catalytic amyloids have emerged as a fruitful source to unravel many different activities. These assemblies can potentially have broad applications that range from biotechnology to prebiotic chemistry. Although many peptides that assemble into catalytic amyloids have been developed in recent years, the elucidation of convergent mechanistic aspects of the catalysis and the structure/function relationship is still a challenge. Novel catalytic activities are necessary to better address these issues and expand the current repertoire of applicability. In this chapter, we described a methodology to produce catalytic amyloids that are specifically active towards the hydrolysis of phosphoanhydride bonds of nucleotides. The design of potentially active amyloid-prone peptide sequences is explored using as template the active site of enzymes with nucleotidyltransferase activity. The procedures include an approach for sequence design, in vitro aggregation assays, morphological characterization of the amyloid state and a comprehensive methodology to measure activity in vitro using nucleoside and deoxynucleosides triphosphates as model substrates. The proposed strategy can also be implemented to explore different types of activities for the design of future catalytic amyloids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2024.01.017 | DOI Listing |
Insulin degrading enzyme (IDE) is a dimeric 110 kDa M16A zinc metalloprotease that degrades amyloidogenic peptides diverse in shape and sequence, including insulin, amylin, and amyloid-β, to prevent toxic amyloid fibril formation. IDE has a hollow catalytic chamber formed by four homologous subdomains organized into two ∼55 kDa N- and C-domains (IDE-N and IDE-C, respectively), in which peptides bind, unfold, and are repositioned for proteolysis. IDE is known to transition between a closed state, poised for catalysis, and an open state, able to release cleavage products and bind new substrate.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
Amyloid fibrils are protein polymers noncovalently assembled through β-strands arranged in a cross-β structure. Biological amyloids were considered chemically inert until we and others recently demonstrated their ability to catalyze chemical reactions in vitro. To further explore the functional repertoire of amyloids, we here probe if fibrils of α-synuclein (αS) display chemical reactivity toward DNA.
View Article and Find Full Text PDFNat Aging
January 2025
Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
The abnormal deposition of amyloid β (Aβ), produced by proteolytic cleavage events of amyloid precursor protein involving the protease γ-secretase and subsequent polymerization into amyloid plaques, plays a key role in the neuropathology of Alzheimer's disease (AD). Here we show that ErbB3 binding protein 1 (EBP1)/proliferation-associated 2G4 (PA2G4) interacts with presenilin, a catalytic subunit of γ-secretase, inhibiting Aβ production. Mice lacking forebrain Ebp1/Pa2g4 recapitulate the representative phenotypes of late-onset sporadic AD, displaying an age-dependent increase in Aβ deposition, amyloid plaques and cognitive dysfunction.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
A nano-enzyme sandwich assay (SWzyme assay), a colorimetric system based on a biochip and inorganic nano-enzyme for rapid and simple determination of exosomal Aβ42 in plasma is proposed. Anti-CD63 antibody-modified biochips were prepared for plasma exosome capture and synthesized highly catalytic Ni@Pt nanozymes for detecting exosomal Aβ42. The method was able to detect exosomal Aβ42 with a limit of detection (LOD) as low as 4.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science and Engineering, Ningxia University, Yinchuan, China. Electronic address:
This study presents a novel method for the efficient preparation of peptide-based films through microwave-assisted Lewis acid catalysis (MALC) of buckwheat globulin (BG). The MALC process efficiently degraded BG into small molecular peptides (1.6-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!