Among the important questions in supramolecular peptide self-assemblies are their interactions with metallic compounds and ions. In the last decade, intensive efforts have been devoted to understanding the structural properties of these interactions including their dynamical and catalytic impact in natural and de novo systems. Since structural insights from experimental approaches could be particularly challenging, computational chemistry methods are interesting complementary tools. Here, we present the general multiscale strategies we developed and applied for the study of metallopeptide assemblies. These strategies include prediction of metal binding site, docking of metallic moieties, classical and accelerated molecular dynamics and finally QM/MM calculations. The systems of choice for this chapter are, on one side, peptides involved in neurodegenerative diseases and, on the other, de novo fibrillar systems with catalytic properties. Both successes and remaining challenges are highlighted so that the protocol could be apply to other system of this kind.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2024.03.021 | DOI Listing |
The field of peptide based supramolecular biomaterials is fast evolving. These types of constructs have been shown to find applications in the fields of bioimaging, drug delivery and scaffolds for chemical reactions. However, the community typically focuses on the use of two specific classes of structured peptides: α-helices and β-sheets, clearly neglecting a unique peptide secondary structure: the polyproline helix.
View Article and Find Full Text PDFAnal Methods
October 2024
Core Facility of Wuhan University, Wuhan University, Wuhan 430072, PR China.
By means of their specific interactions with different metal ions, naturally occurring proteins control structures and functions of many biological processes and functions in organisms. In view of natural metallopeptides, scientists have proposed artificial peptides which coordinate with metal ions through their functional groups either for introducing a special reactivity or for constructing various sensors. However, the design of new peptide ligands requires a deep understanding of the structures, assembly properties, and dynamic behaviors of such peptides.
View Article and Find Full Text PDFChemistry
October 2024
Department of Chemistry, University of Illinois Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA.
Metal binding to β-sheets occurs in many metalloproteins and is also implicated in the pathology of Alzheimer's disease. De novo designed metallo-β-sheets have been pursued as models and mimics of these proteins. However, no crystal structures of canonical β-sheet metallopeptides have yet been obtained, in stark contrast to many examples for ɑ-helical metallopeptides, leading to a poor understanding for their chemistry.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Nanoscience Initiative at Advanced Science Research Center of the Graduate Center of the City University of New York, New York, New York, 10031, USA.
Short peptides are versatile molecules for the construction of supramolecular materials. Most reported peptide materials are hydrophobic, stiff, and show limited response to environmental conditions in the solid-state. Herein, we describe a design strategy for minimalistic supramolecular metallo-peptide nanofibers that, depending on their sequence, change stiffness, or reversibly assemble in the solid-state, in response to changes in relative humidity (RH).
View Article and Find Full Text PDFMethods Enzymol
May 2024
Chemical Biology Unit, Institute of Nano Science and Technology, Punjab, India. Electronic address:
Development of biomolecular enzyme mimics to efficiently catalyse biochemical reactions are of prime relevance for the bulk scale production of industrially relevant biocatalyst. In this regard, amyloidogenic peptides act as suitable self-assembling scaffolds, providing stable nanostructures with high surface area facilitating biocatalysis. Herein, we rationally design two positional amyloidogenic peptide isomers, "Fmoc-VYYAHH (1)" and "Fmoc-VHHAYY (2)" considering catalytic and metal binding affinity of histidine and tyrosine when placed in periphery vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!