Metal Hydrogen-Bonded Organic Frameworks as Open Lewis Acid Catalysts for Two Types of CO Transformations.

Inorg Chem

Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China.

Published: June 2024

Efficient and multiple CO utilization into high-value-added chemicals holds significant importance in carbon neutrality and industry production. However, most catalysis systems generally exhibit only one type of CO transformation with the efficiency to be improved. The restricted abundance of active catalytic sites or an inefficient utilization rate of these sites results in the constraint. Consequently, we designed and constructed two metal hydrogen-bonded organic frameworks (M-HOFs) {[M(L)(HO)]·2HO} (M = Co (), Ni (); L = 1-(4-carboxyphenyl)-1-pyrazole-3,5-dicarboxylic acid) in this research. and are well-characterized, and both show excellent stability. The networks connected by multiple hydrogen bonds enhance the structural flexibility and create accessible Lewis acidic sites, promoting interactions between the substrates and catalytic centers. This enhancement facilitates efficient catalysis for two types of CO transformations, encompassing both cycloaddition reactions with epoxides and aziridines to afford cyclic carbonates and oxazolidinones. The catalytic activities (TON/TOF) are superior compared with those of most other catalysts. These heterogeneous catalysts still exhibited high performance after being reused several times. Mechanistic studies indicated intense interactions between the metal sites and substrates, demonstrating the reason for efficient catalysis. This marks the first instance on M-HOFs efficiently catalyzing two types of CO conversions, finding important significance for catalyst design and CO utilization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.4c00659DOI Listing

Publication Analysis

Top Keywords

metal hydrogen-bonded
8
hydrogen-bonded organic
8
organic frameworks
8
types transformations
8
efficient catalysis
8
frameworks open
4
open lewis
4
lewis acid
4
acid catalysts
4
catalysts types
4

Similar Publications

Enhancing the decomposition rate of ammonium perchlorate (AP), the most common oxidizer in solid propellants, is important for improving propellant performance. Metal organic frameworks (MOFs) have been developed as key materials for catalyzing AP decomposition, as they can achieve good dispersion of active sites through in-situ decomposition. Despite having considerable potential, the structural transformation process and catalytic performance of MOFs in AP decomposition are still unclear, which seriously hinders their application in the field of AP decomposition.

View Article and Find Full Text PDF

Covalent integration of polymers and porous organic frameworks (POFs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen-bonded organic frameworks (HOFs), represent a promising strategy for overcoming the existing limitations of traditional porous materials. This integration allows for the combination of the advantages of polymers, i.e.

View Article and Find Full Text PDF

Polar Networks Mediate Ion Conduction of the SARS-CoV-2 Envelope Protein.

J Am Chem Soc

January 2025

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.

The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.

View Article and Find Full Text PDF

A luminescent lanthanide functionalized hydrogen-bonded organic framework hydrogel: Fluorescence sensing platform for copper and iron ions detection.

Talanta

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China. Electronic address:

The excessive presence of the metal ions Cu and Fe in the environment poses a serious threat to ecosystems and human health, so timely and accurate detection of them has become essential and urgent. In this paper, a novel hydrogel-based fluorescent sensor, named ME-IPA@SA-TbZn, was fabricated facilely through an in-situ cross-linking modification method and was used for the detection of Cu and Fe in water bodies. The ME-IPA@SA-TbZn is essentially a hybrid hydrogel bead that exhibits vibrant fluorescence, employing Tb and Zn functionalized hydrogen-bonded organic frameworks (HOFs) as the fluorescence functional core and sodium alginate (SA) as the hydrogel matrix.

View Article and Find Full Text PDF

Octahedral Iron in Catalytic Sites of Endonuclease IV from and .

Biochemistry

January 2025

Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.

Article Synopsis
  • - During infections, reactive oxygen species can cause DNA damage, necessitating a repair process that involves the enzyme endonuclease IV (Nfo), which removes defective DNA bases through hydrolysis.
  • - The crystal structure of Nfo from a Gram-positive organism shows that it contains two iron ions and one zinc ion, with unique water molecule coordination that may play a role in how the enzyme distinguishes between these metals.
  • - Nfo exhibits slow product release and optimal activity at high salt concentrations, which ties into its function and potentially significant role in organisms that thrive in salty environments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!