Glyburide, a sulfonylurea drug used to treat type 2 diabetes, boasts neuroprotective effects by targeting the sulfonylurea receptor 1 (SUR1) and associated ion channels in various cell types, including those in the central nervous system and the retina. Previously, we demonstrated that glyburide therapy improved retinal function and structure in a rat model of diabetic retinopathy. In the present study, we explore the application of glyburide in non-neovascular ("dry") age-related macular degeneration (AMD), another progressive disease characterized by oxidative stress-induced damage and neuroinflammation that trigger cell death in the retina. We show that glyburide administration to a human cone cell line confers protection against oxidative stress, inflammasome activation, and apoptosis. To corroborate our in vitro results, we also conducted a case-control study, controlling for AMD risk factors and other diabetes medications. It showed that glyburide use in patients reduces the odds of new-onset dry AMD. A positive dose-response relationship is observed from this analysis, in which higher cumulative doses of glyburide further reduce the odds of new-onset dry AMD. In the quest for novel therapies for AMD, glyburide emerges as a promising repurposable drug given its known safety profile. The results from this study provide insights into the multifaceted actions of glyburide and its potential as a neuroprotective agent for retinal diseases; however, further preclinical and clinical studies are needed to validate its therapeutic potential in the context of degenerative retinal disorders such as AMD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.trsl.2024.05.002 | DOI Listing |
Fitoterapia
December 2024
Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health. Faculty of Sciences, Mohammed First University, Oujda, BP-717, 60000 Oujda, Morocco. Electronic address:
Ethnopharmacological Relevance: Hypertension is a serious health problems and a leading cause of adult mortality worldwide. Foeniculum. vulgare Mill, a plant traditionally used for various ailments, including cardiovascular disorders such as hypertension.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China.
Idiopathic inflammatory myopathies (IIM) are a group of systemic autoimmune diseases characterized by muscle weakness and elevated serum creatine kinase levels. Recent research has highlighted the role of the innate immune system, particularly inflammasomes, in the pathogenesis of IIM. This review focuses on the role of inflammasomes, specifically NLRP3 and AIM2, and their associated proteins in the development of IIM.
View Article and Find Full Text PDFWiad Lek
December 2024
DEPARTMENT OF CLINICAL LABORATORY SCIENCES, FACULTY OF PHARMACY, UNIVERSITY OF KUFA, KUFA, IRAQ.
Objective: Aim: Our study aimed to investigate the connection between the ABCC8 gene polymorphisms (rs1801261 and rs757110) and T2DM in the Iraqi Middle Euphrates region. Patients with type 2 diabetes were chosen because they were treated with glibenclamide and glimepiride.
Patients And Methods: Materials and Methods: The groups of this case-control study are the control group obviously healthy persons included 400 (235 Male/165 Female) and 400 T2DM group (213 Male/ 187 Female).
Curr Med Res Opin
December 2024
Atherosclerosis and Vascular Biology Laboratory (Aterolab), Division of Cardiology, State University of Campinas (Unicamp), Sao Paulo, Brazil.
Background: White coat effect (WCE) is a phenomenon linked to increased cardiovascular risk, where office blood pressure readings exceed home or ambulatory measurements. Excess weight and elevated blood pressure or glucose are associated with WCE in type 2 diabetes (T2D). This study compared dapagliflozin and glibenclamide on WCE in T2D patients under equivalent blood pressure and glucose control.
View Article and Find Full Text PDFBMC Complement Med Ther
December 2024
Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C..
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!