Regulation of nitrogen metabolism by COE2 under low sulfur stress in Arabidopsis.

Plant Sci

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China. Electronic address:

Published: September 2024

The interplay between nitrogen and sulfur assimilation synergistically supports and sustains plant growth and development, operating in tandem to ensure coordinated and optimal outcomes. Previously, we characterized Arabidopsis CHLOROPHYLL A/B-BINDING (CAB) overexpression 2 (COE2) mutant, which has a mutation in the NITRIC OXIDE-ASSOCIATED (NOA1) gene and exhibits deficiency in root growth under low nitrogen (LN) stress. This study found that the growth suppression in roots and shoots in coe2 correlates with decreased sensitivity to low sulfur stress treatment compared to the wild-type. Therefore, we examined the regulatory role of COE2 in nitrogen and sulfur interaction by assessing the expression of nitrogen metabolism-related genes in coe2 seedlings under low sulfur stress. Despite the notable upregulation of nitrate reductase genes (NIA1 and NIA2), there was a considerable reduction in nitrogen uptake and utilization, resulting in a substantial growth penalty. Moreover, the elevated expression of miR396 perhaps complemented growth stunting by selectively targeting and curtailing the expression levels of GROWTH REGULATING FACTOR 2 (GRF2), GRF4, and GRF9. This study underscores the vital role of COE2-mediated nitrogen signaling in facilitating seedling growth under sulfur deficiency stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2024.112137DOI Listing

Publication Analysis

Top Keywords

low sulfur
12
sulfur stress
12
nitrogen sulfur
8
growth
7
sulfur
6
nitrogen
6
coe2
5
stress
5
regulation nitrogen
4
nitrogen metabolism
4

Similar Publications

Unlabelled: The redox conditions in the littoral limnic sediments may be affected by the penetration of plant roots which provide channels for oxygen transport into the sediment while decomposition of the dead roots results in consumption of oxygen. The goal of this work was to study the impact of environmental parameters including penetration of roots of L. into the sediments on cycling of the redox-sensitive elements in Lake Kinneret.

View Article and Find Full Text PDF

An Activatable Chemiluminescent Self-Reporting Sulfur Dioxide Donor for Inflammatory Response and Regulation of Gaseous Vasodilation.

ACS Sens

January 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

Sulfur dioxide (SO), being a novel gaseous signaling molecule, exhibits significant potential for application in the field of cardiovascular diseases. SO donors serve as crucial tools for the transportation and regulation of SO in vivo, facilitating the investigation of physiological roles associated with this molecule. However, the current therapeutic SO donors lack the capability to monitor the real-time release of SO, thereby hindering accurate assessment of their therapeutic efficacy and target localization.

View Article and Find Full Text PDF

Efficient Capture of ReO4- from Water by Imidazolium-Based Cationic Polymeric Nanotraps.

Chem Asian J

January 2025

University of North Texas, Department of Chemistry, 1508 W Mulberry St, 76201, Denton, UNITED STATES OF AMERICA.

Rhenium represents an irreplaceable metal resource, which finds extensive applications in diverse fields, particularly in the aerospace and petrochemical industry. However, its remarkably low natural abundance and the lack of independent ore deposits pose significant challenges to its extraction and recovery processes. In this study, we present the highly efficient adsorption of perrhenate by a cationic polymeric nanotrap material, namely CPN-3VIm.

View Article and Find Full Text PDF

Recent progress in C-S bond formation electron donor-acceptor photoactivation.

Org Biomol Chem

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.

Recent advancements in C-S bond formation electron donor-acceptor (EDA) complex photoactivation have been remarkable. EDA complexes, which are composed of electron donors and acceptors, facilitate C-S bond construction under mild conditions through single-electron transfer events upon visible light irradiation. This review highlights the utilization of various sulfur-containing substrates, including diacetoxybenzenesulfonyl (DABSO), sulfonic acids, sodium sulfinates, sulfonyl chlorides, and thiophenols, in EDA-promoted sulfonylation and thiolation reactions, covering the works published since 2017 to date.

View Article and Find Full Text PDF

A versatile reactive layer toward ultra-long lifespan lithium metal anodes.

Natl Sci Rev

February 2025

PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.

Unstable anode/electrolyte interfaces have significantly hindered the development of lithium (Li) metal batteries under high rates and large capacities. In this study, a versatile reactive layer based on sulfur-selenium crosslinked polyacrylonitrile brushes has been developed by a combined strategy of polymer topology design and chemical crosslinking. The sulfur-selenium crosslinked polyacrylonitrile side-chains can react with Li to generate passivated LiS-LiSe-containing solid electrolyte interphase while 3D lithiophilic porous nanonetworks enable Li penetration, contributing to achieving rapid and uniform Li ion flux and a dendrite-free anode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!