Recent advancements in DNA techniques, metabarcoding, and bioinformatics could help expand the use of benthic diatoms in monitoring and assessment programs by providing relatively quick and increasingly cost-effective ways to quantify diatom diversity in environmental samples. However, such applications of DNA-based approaches are relatively new, and in the United States, unknowns regarding their applications at large scales exist because only a few small-scale studies have been done. Here, we present results from the first nationwide survey to use DNA metabarcoding (rbcL) of benthic diatoms, which were collected from 1788 streams and rivers across nine ecoregions spanning the conterminous USA. At the national scale, we found that diatom assemblage structure (1) was strongly associated with total phosphorus and total nitrogen concentrations, conductivity, and pH and (2) had clear patterns that corresponded with differences in these variables among the nine ecoregions. These four variables were strong predictors of diatom assemblage structure in ecoregion-specific analyses, but our results also showed that diatom-environment relationships, the importance of environmental variables, and the ranges of these variables within which assemblage changes occurred differed among ecoregions. To further examine how assemblage data could be used for biomonitoring purposes, we used indicator species analysis to identify ecoregion-specific taxa that decreased or increased along each environmental gradient, and we used their relative abundances of gene reads in samples as metrics. These metrics were strongly correlated with their corresponding variable of interest (e.g., low phosphorus diatoms with total phosphorus concentrations), and generalized additive models showed how their relationships compared among ecoregions. These large-scale national patterns and nine sets of ecoregional results demonstrated that diatom DNA metabarcoding is a robust approach that could be useful to monitoring and assessment programs spanning the variety of conditions that exist throughout the conterminous United States.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247516PMC
http://dx.doi.org/10.1016/j.scitotenv.2024.173502DOI Listing

Publication Analysis

Top Keywords

dna metabarcoding
12
united states
12
national scale
8
diatom-environment relationships
8
streams rivers
8
benthic diatoms
8
monitoring assessment
8
assessment programs
8
diatom assemblage
8
assemblage structure
8

Similar Publications

Article Synopsis
  • Pregnancy involves significant hormonal and metabolic changes to support fetal development, which the study investigates through changes in the salivary microbiome and biochemical markers between the second and third trimesters.
  • Saliva samples from 45 pregnant women were analyzed using advanced DNA sequencing techniques, revealing notable shifts in microbial diversity, including a 3-fold increase in Bacteroidota and changes in other microbial taxa.
  • Biochemical changes included increased BMI, pulse rate, glucose, and cholesterol levels in the third trimester, along with correlations between these factors and microbial abundance, emphasizing the need for monitoring oral health and metabolic health during pregnancy.
View Article and Find Full Text PDF

As the technology for mass identification of species is advancing rapidly, we developed a field sampling method that takes advantage of the emerging possibilities of combining sensor-based data with automated high-throughput data processing. This article describes the five field sampling methods used by the LIFEPLAN project to collect biodiversity data in a systematic manner, all over the world. These methods are designed for use by anyone with basic biology or ecology knowledge from the higher education or university level.

View Article and Find Full Text PDF

Impact of land-use and fecal contamination on Escherichia populations in environmental samples.

Sci Rep

December 2024

Food System Integrity, AgResearch Limited, Hopkirk Research Institute, Massey University, Cnr University Avenue and Library Road, Private Bag 11008, Palmerston North, 4442, New Zealand.

Understanding the composition of complex Escherichia coli populations from the environment is necessary for identifying strategies to reduce the impacts of fecal contamination and protect public health. Metabarcoding targeting the hypervariable gene gnd was used to reveal the complex population diversity of E. coli and phenotypically indistinct Escherichia species in water, soil, sediment, aquatic biofilm, and fecal samples from native forest and pastoral sites.

View Article and Find Full Text PDF

Outdoor microcosms, metabarcoding with next-generation sequencing of the 16S rRNA bacterial gene, total body score (TBS) and physicochemical analyses were used to monitor Mus musculus decomposition aboveground (A) and in the subsurface (S), and compared to soil-only controls (C). As determined by MaAsLin2 analysis, significant shifts in bacterial communities at 30 cm depths within the A, S and C treatments distinguished control from experimental soils, and between aboveground and subsurface deposition, demonstrating the potential for gravesoil discrimination during the first 90 days. For example, Dokdonella (p = 0.

View Article and Find Full Text PDF

We describe a protocol to amplify DNA barcodes of known and unknown taxa of Phytophthora and related plant pathogenic oomycetes from a range of environments. The methods focus on sampling pathogen propagules from water using in situ sampling and filtration equipment and buffers that enable efficient storage and DNA extraction for later downstream processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!