Objectives: With the expanding integration of artificial intelligence (AI) and machine learning (ML) into the structural heart domain, numerous ML models have emerged for the prediction of adverse outcomes after transcatheter aortic valve implantation (TAVI). We aim to identify, describe, and critically appraise ML prediction models for adverse outcomes after TAVI. Key objectives consisted in summarizing model performance, evaluating adherence to reporting guidelines, and transparency.
Methods: We searched PubMed, SCOPUS, and Embase through August 2023. We selected published machine learning models predicting TAVI outcomes. Two reviewers independently screened articles, extracted data, and assessed the study quality according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Outcomes included summary C-statistics and model risk of bias assessed with the Prediction Model Risk of Bias Assessment Tool. C-statistics were pooled using a random-effects model.
Results: Twenty-one studies (118,153 patients) employing various ML algorithms (76 models) were included in the systematic review. Predictive ability of models varied: 11.8% inadequate (C-statistic <0.60), 26.3% adequate (C-statistic 0.60-0.70), 31.6% acceptable (C-statistic 0.70-0.80), and 30.3% demonstrated excellent (C-statistic >0.80) performance. Meta-analyses revealed excellent predictive performance for early mortality (C-statistic: 0.81; 95% confidence interval [CI], 0.65-0.91), acceptable performance for 1-year mortality (C-statistic: 0.76; 95% CI, 0.67-0.84), and acceptable performance for predicting permanent pacemaker implantation (C-statistic: 0.75; 95% CI, 0.51-0.90).
Conclusions: ML models for TAVI outcomes exhibit adequate-to-excellent performance, suggesting potential clinical utility. We identified concerns in methodology and transparency, emphasizing the need for improved scientific reporting standards.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtcvs.2024.05.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!