Manufacturing process of liposomal Formation: A coarse-grained molecular dynamics simulation.

Int J Pharm

Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs CT 06269, USA; Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA; Institute of Material Sciences (IMS), University of Connecticut, Storrs CT, 06269, USA. Electronic address:

Published: June 2024

A method of producing liposomes has been previously developed using a continuous manufacturing technology that involves a co-axial turbulent jet in co-flow. In this study, coarse-grained molecular dynamics (CG-MD) simulations were used to gain a deeper understanding of how the self-assembly process of liposomes is affected by the material attributes (such as the concentration of ethanol) and the process parameters (such as temperature), while also providing detailed information on a nano-scale molecular level. Specifically, the CG-MD simulations yield a comprehensive internal view of the structure and formation mechanisms of liposomes containing DPPC, DPPG, and cholesterol molecules. The importance of this work is that structural details on the molecular level are proposed, and such detail is not possible to obtain through experimental studies alone. The assessment of structural properties, including the area per lipid, diffusion coefficient, and order parameters, indicated that a thicker bilayer was observed at higher ethanol concentrations, while a thinner bilayer was present at higher temperatures. These conditions led to more water penetrating the interior of the bilayer and an unstable structure, as indicated by a larger contact area between lipids and water, and a higher coefficient of lipid lateral diffusion. However, stable liposomes were found through these evaluations at lower ethanol concentrations and/or lower process temperatures. Furthermore, the CG-MD model was further compared and validated with experimental and computational data including liposomal bilayer thickness and area per lipid measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2024.124288DOI Listing

Publication Analysis

Top Keywords

coarse-grained molecular
8
molecular dynamics
8
cg-md simulations
8
molecular level
8
area lipid
8
ethanol concentrations
8
manufacturing process
4
process liposomal
4
liposomal formation
4
formation coarse-grained
4

Similar Publications

A Neural-Network-Based Mapping and Optimization Framework for High-Precision Coarse-Grained Simulation.

J Chem Theory Comput

January 2025

Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

The accuracy and efficiency of a coarse-grained (CG) force field are pivotal for high-precision molecular simulations of large systems with complex molecules. We present an automated mapping and optimization framework for molecular simulation (AMOFMS), which is designed to streamline and improve the force field optimization process. It features a neural-network-based mapping function, DSGPM-TP (deep supervised graph partitioning model with type prediction).

View Article and Find Full Text PDF

Elasticity of Swollen and Folded Polyacrylamide Hydrogel Using the MARTINI Coarse-Grained Model.

ACS Appl Mater Interfaces

January 2025

School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

One of the key advantages of using a hydrogel is its superb control over elasticity obtained through variations of constituent polymer and water. The underlying molecular nature of a hydrogel is a fundamental origin of hydrogel mechanics. In this article, we report a Polyacrylamide (PAAm)-based hydrogel model using the MARTINI coarse-grained (CG) force field.

View Article and Find Full Text PDF

A coarse-grained model of clay colloidal aggregation and consolidation with explicit representation of the electrical double layer.

J Colloid Interface Sci

December 2024

Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA. Electronic address:

Knowledge Gap: The aggregation of clay minerals in liquid water exemplifies colloidal self-assembly in nature. These negatively charged aluminosilicate platelets interact through multiple mechanisms with different sensitivities to particle shape, surface charge, aqueous chemistry, and interparticle distance and exhibit complex aggregation structures. Experiments have difficulty resolving the associated colloidal assemblages at the scale of individual particles.

View Article and Find Full Text PDF

Eukaryotic DNA is packaged in the cell nucleus into chromatin, composed of arrays of DNA-histone protein octamer complexes, the nucleosomes. Over the past decade, it has become clear that chromatin structure in vivo is not a hierarchy of well-organized folded nucleosome fibers but displays considerable conformational variability and heterogeneity. In vitro and in vivo studies, as well as computational modeling, have revealed that attractive nucleosome-nucleosome interaction with an essential role of nucleosome stacking defines chromatin compaction.

View Article and Find Full Text PDF

A challenging topic in materials engineering is the development of numerical models that can accurately predict material properties with atomistic accuracy, matching the scale and level of detail achieved by experiments. In this regard, coarse-grained (CG) molecular dynamics (MD) simulations are a popular method for achieving this goal. Despite the efforts of the scientific community, a reliable CG model with quasi-atomistic accuracy has not yet been fully achieved for the design and prototyping of materials, especially polymers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!