ADAM10 as a major activator of reactive oxygen species production and klotho shedding in podocytes under diabetic conditions.

Biochem Pharmacol

Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdansk, Faculty of Chemistry, Gdańsk, Poland.

Published: July 2024

Early stages of diabetes are characterized by elevations of insulin and glucose concentrations. Both factors stimulate reactive oxygen species (ROS) production, leading to impairments in podocyte function and disruption of the glomerular filtration barrier. Podocytes were recently shown to be an important source of αKlotho (αKL) expression. Low blood Klotho concentrations are also associated with an increase in albuminuria, especially in patients with diabetes. We investigated whether ADAM10, which is known to cleave αKL, is activated in glomeruli and podocytes under diabetic conditions and the potential mechanisms by which ADAM10 mediates ROS production and disturbances of the glomerular filtration barrier. In cultured human podocytes, high glucose increased ADAM10 expression, shedding, and activity, NADPH oxidase activity, ROS production, and albumin permeability. These effects of glucose were inhibited when cells were pretreated with an ADAM10 inhibitor or transfected with short-hairpin ADAM10 (shADAM10) or after the addition soluble Klotho. We also observed increases in ADAM10 activity, NOX4 expression, NADPH oxidase activity, and ROS production in αKL-depleted podocytes. This was accompanied by an increase in albumin permeability in shKL-expressing podocytes. The protein expression and activity of ADAM10 also increased in isolated glomeruli and urine samples from diabetic rats. Altogether, these results reveal a new mechanism by which hyperglycemia in diabetes increases albumin permeability through ADAM10 activation and an increase in oxidative stress via NOX4 enzyme activation. Moreover, αKlotho downregulates ADAM10 activity and supports redox balance, consequently protecting the slit diaphragm of podocyteσ under hyperglycemic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2024.116328DOI Listing

Publication Analysis

Top Keywords

ros production
16
albumin permeability
12
adam10
10
reactive oxygen
8
oxygen species
8
podocytes diabetic
8
diabetic conditions
8
glomerular filtration
8
filtration barrier
8
nadph oxidase
8

Similar Publications

Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis.

Plant Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.

View Article and Find Full Text PDF

Melatonin (MT) is a crucial hormone that controls and positively regulates plant growth under abiotic stress, but the biochemical and physiological processes of the combination of melatonin seed initiation and exogenous spray treatments and their effects on maize germination and seedling salt tolerance are not well understood. Consequently, in this research, we utilized the maize cultivars Zhengdan 958 (ZD958) and Demeiya 1 (DMY1), which are extensively marketed in northeastern China's high-latitude cold regions, to reveal the modulating effects of melatonin on maize salinity tolerance by determining the impacts of varying concentrations of melatonin on maize seedling growth characteristics, osmoregulation, antioxidant systems, and gene expression. The findings revealed that salt stress (100 mM NaCl) significantly inhibited maize seed germination and seedling development, which resulted in significant increases in the HO and O content and decreases in the antioxidant enzyme activity and photosynthetic pigment content in maize seedlings.

View Article and Find Full Text PDF

Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought.

Plants (Basel)

January 2025

Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.

Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development.

View Article and Find Full Text PDF

Background/objectives: Inflammation and oxidative stress are the main pathogenetic pathways involved in the development of several chronic degenerative diseases. Our study is aimed at assessing the antioxidant and anti-inflammatory activity of hydroalcoholic extracts obtained from wheat and its derivatives.

Methods: The content of total phenolic and total flavonoid compounds and antioxidant activity were carried out by ABTS and DPPH assays.

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!